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Abstract. The flow due to the closure of the magnetospheric current in a liquid layer
at the neutron star surface is considered. The only case of a homogeneous magnetic field
is considered, but the possibility of inclination of the field to the neutron star surface
is taken into account. It is shown that the inclination of the magnetic field may lead
to the appearance of a vertical liquid flow velocity comparable to the horizontal one.
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1 Introduction

The current braking is one of the main mechanisms of pulsar braking (Beskin 2018).
It occurs due to the electric current closure inside the neutron star (Beskin 2018;
Sob’yanin 2023). Current distribution in this case has been considered, for example,
by Sob’yanin (2024). In the paper, we assume that neutron star crust is covered by
a plane liquid layer and consider a liquid flow in the layer caused by current closure.

z

x L

β

Fig. 1. This sketch shows the liquid layer on the neutron star surface. The liquid layer is shown in
gray color, the rigid star crust is shown in yellow color, and the magnetic field direction is shown
by green lines.

2 Model

In this paper, we use the same model as Vorontsov & Barsukov 2019; Tsygan et al.
2014. We consider only the simplest case with plane geometry and a homogeneous
magnetic field, see Fig. 1, with isotropic conductivity and viscosity. We also use the
simplest equation of state p = p(ρ), where p and ρ is liquid pressure and density,
respectively, and for the sake of simplicity, we assume that the crust has infinite
conductivity. Following Tsygan et al. 2014, we consider only stationary flow. Hence,
the magnetic hydrodynamic equations in the frame of references rotating with the
neutron star may be written as

ρ (2 [Ω× v] + (v · ∇)v) = −∇p+
1

c
[j×B] +Fvis + ρg, (1)

−∇Φ+
1

c
[v ×B] = R j , divB = 0 , rotB =

4π

c
j , div (ρv) = 0, (2)

where v is liquid velocity, B is magnetic induction, j is electric current density, Φ
is electrostatic potential, R is liquid resistivity, Ω is angular velocity of the neutron
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star rotation, Ω = 2π/P where P is radiopulsar period, Fvis is viscous force and
g = −gez is gravitational force and we assume that g is constant. At first, we
consider the 0th approximation when magnetosphere electric current is absent and,
in this case, we assume that electrical current is the liquid layer and liquid flows
are absent, so we have v(0) = 0, j(0) = 0 and also ∇p(0) = ρ(0) · g ez. We denote
the values in 0th approximation by sign (0). In the paper we assume that B(0) =
B(0) (cos β ez + sin β ex), where B(0) and β are some constants, see Fig. 1. We also
assume that Φ(0) = 0 and density ρ(0) depend only on z. Now we consider small
perturbations caused by magnetospheric electric current. In the linear approximation
of the perturbations we have

2 ρ(0) · [Ω× v] =
B(0)

c
· [j× eB] +Fvis −∇δp− δρ · g ez, (3)

−∇Φ+
B(0)

c
· [v × eB] = R(0) j , divj = 0 and div

(
ρ(0) v

)
= 0, (4)

where v and j are considered as perturbations of liquid velocity and electric current
correspondingly, δp = p − p(0) and δρ = ρ − ρ(0) are perturbations of pressure and

density correspondingly, eB = B(0)/B(0) and c2s =
∂p
∂ρ
(ρ(0)). Let us consider the bound-

ary conditions ∂vx
∂z

∣∣
z=0

= 0, ∂vy
∂z

∣∣∣
z=0

= 0, jz|z=0 = 1
cosβ

· ĵ (m)
B

∣∣∣
z=0

and Φ|z=−L = 0,

v|z=−L = 0, where j (m) = j
(m)
B eB is electric current flow in magnetosphere. In the

case of Ha2 ≫ E−1 ≫ 1, where Ha = (B(0)L)/(c
√

η(0)R(0)) is Hartmann number,
E = η(0)/(ΩL2ρ(0)) is Ekman number and η(0) is liquid shear viscosity coefficient, we
can use “force free” approximation outside the boundary layers. Hence the approxi-
mate solution of equations (3) and (4) outside the boundary layers may be written
as

vx =− 1

cos2 β
· c2

B2
(0)

· (Kx −K ′
x) and vy =

1

cos2 β
· c2

B2
(0)

·
(
Ky +K ′

y

)
, (5)

vz = tgβ · c

B(0)

· 1

ρ(0)(z)
· ∂ĵB
∂y

· K̃z(z), (6)

where we defineKx = Rf
∂δp̂0
∂x̃

+tgβ R̃f
∂2δp̂0
∂y2

,K ′
x =

B(0)

c
· ∂ĵB
∂y

·
(
R̃(0) +

sin2 β
ρ(0)(z)

K̃z(z)
)
and

Ky = −Rf
∂δp̂0
∂y

+ tgβ R̃f
∂2δp̂0
∂x̃ ∂y

, K ′
y =

B(0)

c
·
(
sinβ cosβ R(0) ĵB − R̃(0)

∂ĵB
∂x̃

)
and also we

introduce K̃z(z) =
∫ z

−L
ρ(0)(z

′)R(0)(z
′) ·(f(z′)K0 − 1) dz′, R̃(0)(z) =

∫ z

−L
R(0)(z

′) dz′,

Rf (z) = R(0)(z) · f(z), R̃f (z) =
∫ z

−L
Rf (z

′) dz′ and the value K0 is defined as K0 =∫ 0

−L
ρ(0)(z

′)R(0)(z
′) dz′ /

∫ 0

−L
ρ(0)(z

′)R(0)(z
′) f(z′) dz′. The function f(z) is defined as
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f(z) = exp
(∫ 0

z
g / c2s(z

′) dz′
)
. The values δp̂0 and ĵB depend only on x̃ = x− tgβ z

and y. And the function δp̂0 may be written as

δp̂0(x̃, y) = cos β · sin β ·
B(0)

c
· K0

2π
·
∫ +∞

−∞
ln(r̃) · ∂ĵB

∂y
(x̃′, y′) dx̃′ dy′, (7)

where r̃ =
√

(x̃− x̃′)2 + (y − y′)2 . The pressure and density perturbations δp and
δρ are equal to δp = δp̂0(x̃, y) ·f(z) and δρ = δp/c2s(z) correspondingly. The function

ĵB(x̃, y) is defined as ĵB(x̃, y) = ĵ
(m)
B (x = x̃, y, z = 0).

3 Results

The solutions (5) and (6) show that vertical flow velocity may sometimes be com-
parable with horizontal flow velocities. For, example, in the case of ρ ∼ 106 g cm−3

(Haensel et al. 2007), η(0) ∼ 104 g cm−1 s−1 (Chugunov & Yakovlev 2005; Ofengeim
& Yakovlev 2015), R(0) ∼ 10−19 SGS (Potekhin 1999) we have E ∼ 10−11 and

Ha ∼ 1011. So in the case of β ∼ π
4
, P ∼ 1 s, B(0) ∼ 1012 G and j

(m)
B ∼ ΩB(0)/(2πc)

we may estimate vz ∼ vx ∼ 10−10−10−8cm s−1. It means that electric current almost
does not close in the liquid layer, which is consistent with the result of Sob’yanin
(2023) and supports the conclusion of Sob’yanin (2024) that pulsar J0901-4046 brakes
due to electric closure in the rigid crust or possibly in deeper layers. It is also possible
that such flow may lead to a very slowly growing instability similar to the one that
was considered in Kuznetsov & Mikhailov 2024.
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