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Abstract. We found the dispersion equation for magnetohydrodynamic kink oscil-
lations of a force-free magnetic flux rope with uncompensated longitudinal electric
current under the conditions of the solar corona using the energy method and the thin
magnetic flux tube approximation. It is shown that the eigenfunctions, along with
the eigenvectors, impose additional restrictions on the stability conditions of the kink
instability of a flux rope. This allows us to obtain not only the necessary, but also
a sufficient condition for stability. The observed weak twist of coronal loops with a
small (< 2–3) number of the turns of magnetic field lines around the axis indicates
the dominance of unshielded magnetic flux rope in the corona of the Sun, in which the
longitudinal electric currents do not exceed 1011–1012 A.
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1 Introduction

It is believed that electric currents responsible for the non-potential component of
the coronal magnetic field are concentrated in coronal loops, which can be modeled
at least in some cases as the magnetic flux ropes. In addition to the flares, they can
cause coronal mass ejections, which are the most geoeffective solar events. Despite
this, there is still no clear understanding of the structure and characteristic values of
coronal electric currents. In particular, it has not been possible to determine whether
the currents in the corona are neutralized (shielded) or non-neutralized (unshielded),
as is the case in the solar photosphere (Tsap et al. 2022).

There are two types of solar flares: confined and eruptive. The type of the flare
depends on the possibility of developing either torus or kink instability (Jing et al.
2018). Torus instability arises primarily due to the restructuring of the magnetic
field, while the kink instability depends on the degree of twisting of the magnetic
field lines. Which mechanism is more important is not yet entirely clear. Note that
Jing et al. (2018) did not reveal a dependence of the flare type on the degree of
twisting of magnetic flux ropes for 38 flare events, 26 of which were accompanied by
coronal mass ejections. In this regard, the question arises about the possible reason
for such statistics. Previously, we considered the criteria for the magnetohydrody-
namic (MHD) kink instability of both shielded and unshielded (laboratory pinch)
magnetic flux rope based on the energy method (Tsap et al. 2020, 2022). Using the
thin magnetic flux tube approximation with a sharp boundary, it was found that
shielded flux tubes are stable with respect to kink modes (Tsap et al. 2020). How-
ever, the question of the stability of unshielded flux tubes could not be fully clarified,
since the authors did not pay enough attention to studying the behavior of the eigen-
functions (displacement vectors) of the system of linearized equations of ideal MHD.
As a result, the stability condition obtained by Tsap et al. (2022) is only necessary.
Besides, we did not consider in detail the behavior of modes with different signs of
the azimuthal wave numbers m = ±1.

The aim of this paper is to derive a dispersion relation for the kink modes of
unshielded magnetic ropes (coronal loops) using the energy method and to investigate
the limitations imposed by the boundary conditions at the bases of the loops in the
light of recent statistical studies (Jing et al. 2018).

2 Electrical currents and coronal loop twisting

Let us consider the relationship between the electric current and the twisting of
coronal loops, modeled as straight, cylindrically symmetric, unshielded magnetic flux
ropes with a cross-sectional radius of a, assuming a sharp plasma–plasma boundary.
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According to Ampere’s law, using cylindrical coordinate system (r, φ, z) and
standard notation, the longitudinal current density can be represented as

jz =
c

4π

1

r

∂

∂r
(rBφ) . (1)

Multiplying Equations (1) by area elements 2πrdr, after integration we have

Iz = Izi(r → a) + Ize(r → a) =
cBφ(r)r

2
. (2)

Equation (2) assumes that the total electric current Iz of the shielded magnetic rope,
when the azimuthal field components inside (i) and outside (e) are equal to zero, i.e.
Bφ(a) = Bφi(r → a) = Bφe(r → a) = 0.

Unlike the shielded flux rope, the unshielded flux rope with the uncompensated
electric current (Iz ̸= 0), for which Bφ(a) = Bφe(r → a) = Bφi(r → a) and Ize(r →
a) = 0, can effectively compress the plasma because the equation of the total pressure
balance takes the form (Solovev & Uralov 1979)
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Here p is the gas pressure, Bz and Bφ are the longitudinal and azimuthal magnetic
fields, respectively (in the local cylindrical system of coordinates). The brackets de-
note the values averaged over the cross-section of radius a.

Let us assume that the values of coronal and photospheric electric currents are
within the same order of magnitude, i.e. the longitudinal electric currents of twisted
coronal loop are Izi = (1 − 3) × 1011 A, which correspond to 3 × 1020 − 1021 statA.
Therefore, according to (2) for a = (1− 3)× 108 cm we obtain

Bφ(a) = 2Iz/(ca) = 60− 700 G. (4)

Using eq. (2) for the total twist angle inside a flux rope at r = a we find

Φ(a) =
LBφi(a)

aBzi(a)
=

2LIz
ca2Bzi(a)

. (5)

For a = (1−3)×108 cm, L = 3×109 cm, Bzi(a) = 300 G, and Iz = (1−3)×1011 A,
from Equation (5) we get Φ(a) = 0.6–66. These values of the twist angle correspond
to the number of turns of the magnetic field lines around the axis of the flux rope
R ≈ Φ(a)/2π = 0.1–10.
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3 Eigenvector functions and twist instability

Let’s consider an axisymmetric flux rope (cylinder) with the unperturbed tube axis,
which is parallel to the z-axis with the magnetic field

B =

{
(0, Bφi(r), Bzi(r)), r ⩽ a;
(0, Bφe(r), Bze(r)), r > a.

(6)

Using standard notation, it can be easily shown that that eigenvalues Λ = Ω2

of the magnetic configuration with a sharp plasma–plasma boundary separating the
inner and outer regions by the surface σ can be found from the following expressions
(Tsap et al. 2020):
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K =
δB2

4π
+

j

c
(s× δB) + γp(∇s)2 + (s∇p)∇s+ gs∇(ρs),

P = p+B2/8π, ⟨P ⟩ = Pe − Pi.

For the kink mode (m = ±1), neglecting gravity and using the procedure of
minimization, we can find the radial displacement sr inside a flux rope in the long-
wavelength limit (ka ≪ 1) when the plasma parameter β ≪ 1 is equal to s0 = const
(Tsap et al. 2020).

If the magnetic field outside a flux rope (r > a) is potential (∇ × Be = 0), we
can take

Bφe = A/r, Bze = const, (9)

where A = const. In this case, due to minimization of We the radial component of
eigenvector is (Tsap et al. 2022)

sr(r) = s0
kBzea

2 +mA

kBzer2 +mA
= s0

a

r

kaBze +mBφe(a)

krBze +mBφe(r)
. (10)

Equations (9) and (10) assume the following important restrictions

|ka|Bze > Bφe(a) or |ka| > Bφe(a)/Bze . (11)
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In terms of eq. (7), (8), and (10), we can find the dispersion equation in the form

Ω2 =
k2

4π

B2
zi +B2

ze + 2mBφe(a)Bze/(ka)

ρi + ρe +mρeBφe/(kaBze)
. (12)

Equation (12) suggests that the kink modes (m = −1, k > 0) and (m = 1, k < 0) as
well as (m = −1, k < 0) and (m = 1, k > 0) have the same eigenvalue Ω.

Fig. 1. The dependence of possible values of the twist angle of magnetic field lines Φ on the ratio
of the longitudinal components of the magnetic field inside and outside the flux rope Bze/Bzi for
N = 1, 2, 3 and based on formula (16). The shaded area corresponds to the stability area.

Taking into account the condition that the footpoints of the coronal magnetic
loops are frozen into photosphere and setting |k| = πN/L, where N = 1, 2 . . . are the
natural numbers, from eq. (5), assuming Bze = Bze(a), we get

Φe(a) = LBφe(a)/[aBze(a)] < Nπ. (13)

In turn, from the stability condition, according to which the numerator in the
dispersion relation (12) must be positive, we have

Φ(a) =
LBφi(a)

aBzi(a)
<

Nπ

2

B2
zi(a) +B2

ze(a)

Bφe(a)Bze(a)

Bφi(a)

Bzi(a)
. (14)
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The inequalities (13) and (14) are the necessary and sufficient conditions the for
the magnetic flux rope stability with respect to kink modes. In case of unshielded
rope, when Bφi(a) ≈ Bφe(a), inequality (14) reduces to the form

Φ(a) <
Nπ

2

B2
zi(a) +B2

ze(a)

Bze(a)Bzi(a)
. (15)

Note that for Bzi(a) ≈ Bze(a) and N = 2 from (15) we get the well-known
Kruskal–Shafranov stability criterion: Φ(a) < 2π.

For the general case, according to (13) and (15), the conditions of stability are

Φ(a) < Nπ

{
Bze(a)/Bzi(a),
(B2

zi(a) +B2
ze(a))/(2Bzi(a)Bze(a)).

(16)

Figure 1 shows the stability region (shaded in gray) of a magnetic flux rope at
N = 1, 2, 3. It is seen that the total twist angle of the magnetic field lines Φ can hardly
significantly exceed 12 radians, i.e. the maximum number of turns R ≈ 12/2π ≈ 2.

4 Summary

We have shown that coronal loops with uncompensated electric current cannot be
strongly twisted (Φ ≲ 10) due to the development of kink instability. This also
suggests that the electric currents cannot significantly exceed 1011−1012 A in the solar
corona. Thus, the twist angle of the magnetic field lines can serve as an observational
criterion for identifying shielded and unshielded coronal flux ropes. At the same
time, the lack of dependence of compact and eruptive solar flares on the degree of
twisting of magnetic flux ropes can be explained by the coexistence of magnetic
flux ropes of both types in the solar corona. However, we do not exclude that the
excitation of eigenoscillations of coronal loops with footpoints, which are frozen-in
to the photosphere, faces difficulties because of the dependence of eigenfrequency Ω
on the signs of m and k (Terradas & Goossens 2012).
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