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Abstract. A statistically correct method for optimizing the parameters of the kine-
matic model for a homogeneous set of Galactic objects has been developed and im-
plemented, which includes minimizing the squares of relative deviations from the ob-
served radial velocity, proper motions, and distant characteristic. The latter refers to
the trigonometric parallax (in the case of absolute distances) or the distance modulus
(in the case of relative, i.e., photometric, distances). The solution lies in the technique
of the principle of maximum likelihood. The presence of measurement errors and nat-
ural (dynamic, astrophysical) velocity dispersion is taken into account; the parameters
of the latter (velocity ellipsoid) are estimated. The final iterative algorithm includes
optimization of the smoothness of the rotation law and a flexible procedure for elim-
inating outliers in the data, generalized to a four-dimensional field of residuals. The
method, without requiring restrictions on the magnitude of random errors in the dis-
tant characteristic, directly takes into account the non-Gaussian distribution of errors
in heliocentric distances, thereby correcting the corresponding systematic shifts in the
parameters of the model and the average rotation curve of the subsystem under con-
sideration. The inclusion of distance uncertainties in the probabilistic model strongly
affects the estimates of natural velocity variances (reduces them), and also generally
reduces the variances of model parameters. Applying the method to HMSFR maser
sources with trigonometric parallaxes gives the following parameter estimates: distance
to the center of the Galaxy R0 = 7.88 ± 0.12 kpc, angular velocity of rotation of the
maser subsystem on the solar circle ω0 = 28.43 ± 0.22 km s−1 kpc−1, corresponding
linear velocity θ0 = 224± 4 km s−1, the angular velocity of the Sun’s rotation around
the center of the Galaxy ω⊙ = 30.40± 0.20 km s−1 kpc−1.
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1 Introduction

Studies of the kinematics of the Milky Way on a large scale based on data on en-
sembles of Galactic objects require measurements not only of the components of the
velocities of objects, but also of the heliocentric distances to them. However, with
appropriate kinematic modeling, the traditional difficulty is taking into account the
uncertainty of heliocentric distances. Failure to account for such uncertainty can
lead to significant systematic errors in the results. This problem became especially
relevant after the appearance of mass joint determinations of proper motions and
trigonometric parallaxes – e.g., catalogs of maser sources (Reid et al. 2019; VERA
Collaboration et al. 2020), the Gaia catalog (Gaia Collaboration et al. 2023) – be-
cause objects with large linear and relative errors in distances are guaranteed to be
present in such databases.

In early work, Reid et al. (2009) attempted to account for the uncertainty of the
parallaxes in the framework of the method of least squares, evaluating model parallax
by radial velocity, but then, faced with difficulties, they abandoned this approach and
returned to the usual “velocity-only” fitting (Reid et al. 2014, 2019). However, the
uncertainty of the distance for many masers turns out to be too large to be ignored.
At the same time, the understanding is gradually spreading that the maximum like-
lihood method (MLM) is a promising tool for such research. Rastorguev et al. (2017)
take into account the uncertainty of distances within the framework of the MLM
by including partial derivatives of the first order in distance for velocities in the co-
variance matrix. However, such accounting ignores the non-Gaussian distribution of
errors in distances and is suitable only for small uncertainties of the latter.

A better idea is the individual reduction of heliocentric distances by including
distributions of distant characteristics of objects in the likelihood function. Pont et al.
(1994) applied this approach to photometric distances, using only radial velocities,
and while fixing the parameters of the velocity ellipsoid. In the case of involving
proper motions and parallaxes, the same approach was implemented within the MLM
by Aghajani & Lindegren (2013) and Ding et al. (2013). However, the analytical
solution given by these authors for the reduced (corrected) parallaxes is approximate
and can only be applied with small parallax errors.

In this paper, we propose a spatial-kinematic modeling method based on the prin-
ciple of maximum likelihood, which works with a minimum of assumptions, takes into
account natural and measurement variances, does not require limits on parallax errors
and directly takes into account the non-Gaussian error distribution in heliocentric
distances. The method is applied to HMSFR masers.
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2 Data

From maser sources, the HMSFR class masers are of the greatest interest for study-
ing the kinematics of the Galaxy as a very “cold” subsystem of a thin disk with
absolute distances, moreover, characterized by small parallax uncertainties even for
large heliocentric distances (see Nikiforov & Veselova 2018). To obtain a sample of
HMSFR measurements, we used the catalogues in Reid et al. (2019); VERA Col-
laboration et al. (2020), supplementing them with new data from the literature: Xu
et al. (2021); Sakai et al. (2021); Bian et al. (2022); Mai et al. (2023); Hyland et al.
(2023, 2024). The full sample includes 210 HMSFR masers.

3 Method

A variable, i.e., depending on unknown parameters of the model, part of the loga-
rithmic likelihood function has the following form:
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Here a is the vector of parameters; Vr,j, µ
′
l,j, µb,j, and ϖj are catalog (measured)

values of heliocentric radial velocity Vr, longitude (µ′
l ≡ µl cos b) and latitude (µb)

proper motions, and parallax ϖ for the jth object; ϖ0,j — the reduced parallax
value of the jth object; N is the sample size. The total variances of the velocity
characteristics for the jth object are the the sums of two components:
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where σ̃2
j are the measuring variance, σ∗2

j = σ∗2
j (lj, bj, ϖ0,j;σR, σθ, σZ , R0) are con-

tributions of natural dispersion, i.e., the velocity ellipsoid (σR, σθ, σZ). Here lj and
bj are the longitude and latitude of jth object, correspondingly; R0 is the distance
from the Sun to the center of the Galaxy. The reduced parallax is considered as a
random variable distributed according to the normal law N(ϖj, σ

2
ϖ,j), where σϖ,j is

the catalog uncertainty of parallax. The triple of values (lj, bj, ϖ0,j) determines the
point of the (non-orthogonal) projection of the object onto the kinematic model,
taking into account all random factors.
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The following model was used for velocity characteristics:

Vr,mod = Tn(∆R)
R0

R
sin l cos b− u⊙ cos l cos b− v⊙ sin l cos b− w⊙ sin b,

kµ′
l,mod = Tn(∆R)

(
R0 cos l

r
− cos b

)
R−1 − ω0 cos b+ (u⊙ sin l − v⊙ cos l)/r,

kµb,mod = Tn(∆R)
R0

Rr
sin l sin b+ (u⊙ cos l sin b+ v⊙ sin l sin b− w⊙ cos b)/r.

(3)

Here Tn(∆R) ≡ −2A∆R+
∑n

i=2
θi
i!
(∆R)i is the contribution of the expansion of the

average linear rotational velocity θ(R) of the subsystem in a series of ∆R ≡ R−R0,

n ≥ 1; A is the Oort parameter; θi ≡ diθ
dRi

∣∣∣
R=R0

; R = R(r, l, b) is the Galactoaxial

distance, r = 1/ϖ is the heliocentric distance; ω0 is the angular velocity of rotation
of the subsystem at R0; u⊙, v⊙, w⊙ are components of the residual velocity of the
Sun relative to the rest standard of the subsystem; k = 4.7406.

The parameter vector a is found by minimizing the function L(a) for the selected
value of the model order n. For a fixed sample of objects, a solution was sought for n
from 1 to 8. The optimal order of the no model was determined based on the behavior
of dispersion in the Galactic plane, σ2

plane ≡ σ2
R + σ2

θ , depending on n using a partial
F-test (see details in Nikiforov 1999a,b). For optimal order, an outlier exclusion
procedure was performed using a one-dimensional algorithm (Nikiforov 2012) and its
generalization to a four-dimensional field of residuals based on statistics χ2

4. The value
of the algorithm parameter L′ = 3 was used to estimate the parameters of the velocity
ellipsoid; with L′ = 1 (a more strong criterion), the remaining parameters were
estimated (see details in Nikiforov 2012). After each series of exceptions, solutions
were searched anew for different orders of n and the whole procedure was repeated
from the beginning until no more exceptions were needed.

4 Results

In all the considered cases, the optimal model was of the order no = 3. For this
order, the results are presented in Table 1. They show that not taking into account
the uncertainty of parallaxes (conventional 3D fitting) leads to a noticeable shift in
the estimates of some parameters compared to our proposed method (4D fitting).
In particular, the 3D estimate of R0 is overestimated by ∼0.4 kpc; respectively, the
estimate of the Oort parameter A is underestimated. The natural dispersions of σR

and σθ with 3D fitting are overestimated by a multiple. At the same time, the non-
zero parameters of the velocity ellipsoid, even after excluding outliers within the 4D
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fitting, show that the residuals cannot be fully explained only by measurement errors
and the natural velocity dispersion is quite measurable for the HMSFR subsystem.
It should be emphasized that estimates of R0 based on these data for 4D fittings are
very stable to various calculation options. The final results in Table 1 are highlighted
in bold. Figure 1, representing the rotation curve based on HMSFR data and the
resulting model, also demonstrates that parallax errors should not be ignored.

Table 1. Results of spatial-kinematic modeling based on HMSFR maser data for a model of optimal
order no = 3

N DoM Exclusions R0 ω0 A u⊙ v⊙ w⊙ σR σθ σz θ2 θ3

(kpc)
(
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) (
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) (
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) (
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s

) (
km
s

) (
km
s

) (
km
s

) (
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s

) (km/s
kpc2

) (
km/s
kpc3

)
210 3D — 8.317 28.43 14.82 3.47 16.41 8.27 20.36 15.79 4.80 −1.83 1.16

+0.140
−0.126 ±0.39 ±0.41 ±1.71 +1.92

−1.91 ±0.57 +1.49
−1.23

+1.49
−1.38

+0.66
−0.64 ±0.32 ±0.20

210 4D — 7.935 28.3 15.77 6.21 16.0 8.36 11.06 4.8 4.10 −1.29 1.30
+0.123
−0.120 ±0.2 +0.26

−0.25
+1.04
−1.07 ±1.0 ±0.54 +0.73

−0.83 ±0.9 +0.65
−0.64

+0.22
−0.23

+0.18
−0.17

201 4D L′ = 3 7.897 28.46 15.56 6.43 15.67 8.32 7.13 4.64 3.45 −1.30 1.09
+0.116
−0.113 ±0.22 ±0.22 ±0.85 +0.93

−0.94
+0.52
−0.53

+0.83
−0.77

+0.84
−0.85

+0.64
−0.65

+0.20
−0.21

+0.14
−0.13

197 4D L′ = 1 7.881 28.43 15.46 6.09 15.55 8.22 (7.13) (4.64) (3.45) −1.34 1.03
+0.119
−0.115 ±0.22 ±0.23 ±0.86 ±0.92 ±0.52 ±0.20 ±0.14

The second column “DoM” indicates the dimension of the method: “3D” means that catalog values
of parallaxes were used (parallax errors were not taken into account); “4D” means that the reduced
parallaxes were found (parallax errors were taken into account).

5 Summary

The proposed method (4D fitting) makes it possible to eliminate systematic errors
in the results of kinematic modeling due to the uncertainty of parallaxes. As a result
of its application to HMSFR masers, new estimates of fundamental parameters were
obtained, in particular, R0 = 7.88 ± 0.12 kpc, ω0 = 28.43 ± 0.22 km s−1 kpc−1. The
corresponding derived parameters: the linear velocity of rotation of the HMSFRs at
R = R0 is θ0 = 224± 4 km s−1, the angular velocity of the Sun’s rotation around the
center of the Galaxy is ω⊙ = 30.40±0.20 km s−1 kpc−1, θ⊙ ≡ ω⊙R0 = 240±4 km s−1.
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Fig. 1. The rotation curve for the optimal order model (no = 3) according to the HMSFR maser
data. Vertical bars display errors in measuring the velocity characteristics of objects. Inclined (“bro-
ken”) bars show a change in the position of an object on the rotation curve when the parallax changes
by the amount of its uncertainty in both directions. The adjusted uncertainties of proper motions
for some objects are shown as additional blue bars. The Sun sign corresponds to the point (R0, θ⊙).
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