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Abstract. The process of accretion onto a neutron star with strong magnetic field
is discussed. The equilibrium radius, which is defined by equating the pressure of the
accreting material with the magnetic pressure due to the dipole magnetic field of the
neutron star, is estimated for the cases of a spherical accretion flow and a Keplerian
accretion disk. It is emphasized that the magnetospheric radius of an accreting star
is defined by equating the mass accretion rate observed in the system with the rate
of plasma diffusion into the magnetic field of the neutron star at the magnetospheric
boundary. Following this definition we obtained a system of equations, which are the
continuity equation and the pressure balance equation. We show that the radius of
magnetosphere evaluated in this way significantly differs from the equilibrium radius.
In particular, the Alfvén radius (which is just the equilibrium radius in a peculiar
case of a spherically symmetric accretion flow) under the same conditions exceeds
the magnetospheric radius of an accreting neutron star by more than an order of
magnitude.
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1 Introduction

We consider a Neutron Star (NS) with the mass Mns, the radius Rns, the surface
magnetic field Bns and the dipole magnetic moment µ = (1/2)BnsR

3
ns, which ac-

cretes matter at a rate Ṁ. The questions are (i) at which distance (from the center
of the NS) the balance between the pressure of the accretion flow and the pressure
of the NS magnetic field can be reached (the equilibrium radius), and (ii) at which
distance the rate of penetration of the accretion flow into the magnetic field of the
NS reaches the rate of mass accretion Ṁ, which is considered constant (a stationary
accretion picture). We examine these questions for both the spherical and disk accre-
tion scenarios within the corotation approximation, which implies that the angular
velocity of matter at the inner radius of the accretion flow is equal to the angular
velocity of the NS.

2 The equilibrium radius

The equilibrium radius, req, is defined by equating the magnetic pressure due to the
dipole magnetic field of a NS, pm(r) = µ2/2πr6, with the external pressure of the
accretion flow, pacc.

The pressure of a spherical accretion flow is dominated by the dynamic (ram)
pressure, which leads us to the equilibrium radius,

r(sph)eq =

(
µ2

Ṁ
√
2GMns

)2/7

≃ 1.2× 109 cmµ
4/7
30 Ṁ

2/7
15 m1/7, (1)

which is known as the Alfvén radius. Here µ30 = µ/1030Gcm3, Ṁ15 = Ṁ/1015 g s−1,
and m = Mns/1.4M⊙.

The pressure of an accretion disk in the corotation approximation is contributed
mainly by the thermal gas pressure. The equilibrium radius in this case (Beskrovnaya
& Ikhsanov 2024),

r(d)eq ≃ 34α8/27 µ8/27

Ṁ7/27 (GM∗)7/27
≃ 3.6× 108 cmα8/27 µ

16/27
30 Ṁ

−7/27
15 m−7/27, (2)

is smaller than the Alfvén radius under the same conditions. Here α = vtℓt/csh0 ≤ 1
is the efficiency parameter which is used to normalize the velocity, vt and scale, ℓt,
of turbulent motions to the sound speed, cs, and half-thickness of the disk, h0.
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3 The magnetospheric radius

The magnetospheric radius of an accreting star is defined by equating the rate of
plasma penetration into the magnetic field of the NS, Ṁin, to the mass accretion
rate beyond the magnetospheric radius, Ṁ. The penetration rate in the general case
is limited as Ṁin ≥ Ṁdiff , where

Ṁdiff(r) = S(r) v⊥(r) ρ(r), (3)

is the rate of plasma diffusion into the magnetic field of a NS at a given radius r.
Here S ≃ 4πrh0 is the area of interaction between the accretion disk and the NS
magnetic field; v⊥ ≃ δm/tff is the velocity of plasma diffusion across the magnetic field

lines, where δm ≃ (Defftff)
1/2 is the thickness of the diffusion layer for the diffusion

coefficient Deff and tff is the free-fall time, which in the considered case represents
the time of diffusion process; ρ ≃ µ2/2πr6c2s is the density of the accretion flow at
the inner radius of the disk, which can be evaluated from the equation of pressure
balance between the disk and the magnetosphere at its boundary.

Evaluating Ṁdiff(r) for the case of Bohm diffusion and solving equation Ṁdiff(r) =
Ṁ for r one finds r = r

N
, where (Beskrovnaya & Ikhsanov 2024)

r
N
≃ 0.16λ0 µ

6/11

Ṁ4/11 (GMns)1/11
≃ 5.6× 107 cm × λ0 µ

6/11
30 Ṁ

−4/11
15 m−1/11, (4)

and λ0 is a dimensionless parameter of the order of unity. The radius r
N
represents

the minimum possible value of the magnetospheric radius of an accreting star. The
inflowing matter cannot approach the NS at a closer distance since the rate of its
diffusion into the stellar magnetic field at this radius reaches the rate of mass transfer
in the disk. Furthermore, the radial velocity of plasma across the magnetic field lines
at this radius is equal to the radial velocity of plasma in the disk.

4 Discussion

It is important to note that the physical problem of describing magnetospheric accre-
tion essentially differs from the situation with the Earth magnetosphere. The solar
wind in the latter case overflows the magnetic field of the Earth and only a tiny frac-
tion of it penetrates into the magnetosphere. This occurs because of a high velocity
of the solar wind which by a factor of 30–50 exceeds the parabolic velocity at the
Earth’s surface (so the Bondi radius proves to be much smaller than the radius of the
Earth). The minimum size of the magnetosphere (a distance of the closest approach
between the solar wind and the Earth) in this case can be roughly evaluated by
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equating the pressure of the dipole magnetic field of the Earth and the ram pressure
of solar wind.

The situation with an accreting star is essentially different. The accretion flow is
gravitationally bound with the accreting star (the Bondi radius is much larger than
the magnetospheric radius). Almost all of the inflowing matter in this case is accreted
onto the stellar surface. A stationary accretion picture under these circumstances can
be constructed only if the rate of plasma penetration into the magnetosphere at its
boundary is equal to the total mass accretion rate. Hence, the primary condition is
the continuity equation and the pressure balance is a complementary (although a
very important) condition which helps to reduce a number of free parameters of the
model.

Historically, the magnetospheric radius of an accreting NS was calculated for the
spherical accretion flow using the pressure balance equation with the Alfvén radius
as a solution. But the rate of plasma diffusion into the magnetosphere in this case is
too low to explain the observed luminosity of X-ray pulsars. To solve this problem
an assumption about instabilities of the magnetospheric boundary had been invoked
(for discussion see, e.g., Ikhsanov & Pustil’nik 1996, and references therein).

The equilibrium magnetospheric boundary of a NS accreting from a spherical
flow under the condition T (r

A
) = Tff(rA) is interchange stable (Arons & Lea 1976).

Here T (r
A
) and Tff(rA) are the gas and the free-fall temperature at the magnetospheric

boundary. The boundary could be unstable under the condition T (r
A
) ≪ Tff(rA). But

the equilibrium shape of the magnetosphere for this case has been never investigated.
Instead, the stability analysis was performed extrapolating the solution for the case
of T (r

A
) = Tff(rA) to the case of T (r

A
) ≪ Tff(rA). A validity of this extrapolation is

rather questionable. Furthermore, the matter in this situation tends to overflow the
magnetospheric boundary towards the magnetic pole regions and to accumulate in
the magnetic cusps, which are interchange stable (Michel 1977). It therefore appears
that the continuity equation for the case of spherical accretion has not been solved so
far. The diffusion-driven accretion scenario is currently available for the case of disk
accretion in which, as shown above, the magnetospheric radius significantly differs
from the traditionally invoked Alfvén radius, which is just the equilibrium radius in
the case of a NS undergoing spherical accretion.

References

Arons J. and Lea S., 1976, Astrophysical Journal, 207, p. 914
Beskrovnaya N. and Ikhsanov N., 2024, Astrophysical Bulletin, 79, p. 104
Ikhsanov N. and Pustil’nik L., 1996, Astronomy & Astrophysics, 312, p. 338
Michel F., 1977, Astrophysical Journal, 216, p. 838


	The radius of magnetosphere and the equilibrium radius are not the same!

