ASTEROID ACTIVITY: SPECTRAL FEATURES AND PROBABLE PHYSICAL REASONS
UDK 52 Астрономия. Геодезия UDK 52-4 Процессы, относящиеся к телам и системам UDK 52-424 Столкновения UDK 53 Физика UDK 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа UDK 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии UDK 523 Солнечная система UDK 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система UDK 52-1 Метод изучения UDK 52-6 Излучение и связанные с ним процессы
Abstract and keywords
Abstract (English):
Spectral signs of sublimation-driven dust activity of main-belt asteroids with primitive mineralogy (of C, B, F, G, and X types) are considered. The reflectance spectra of active asteroids of primitive types are compared with model ones of a conditionally active C-type asteroid surrounded by a dust exosphere consisting of submicron aggregate particles of different composition. This phenomenon in primitive asteroids may be impact-induced and become subsequently periodic near perihelion if connected with considerable water ice deposits of the asteroids. Significant additional factors influencing the primitive-type active asteroids, although secondary by random nature, are flares and eruptive events on the Sun, and electrostatic field of photoemission nature on the sunlit side of the bodies. We argue that the formation of aggregate dust particles in a dust exosphere of active asteroids may be one of the fundamental processes.

Keywords:
asteroids: general; comets: general; methods: observational, radiative transfer, scattering
Text
Text (PDF): Read Download
Text (PDF): Read Download
References

1. Alexander C., McKeegan K., Altwegg K., 2018, Meteorites, Asteroids, and Comets. Space Science Reviews, 214, id. 36

2. Busarev V., Barabanov S., Puzin V.B., 2016, Solar System Research, 50, 4, p. 281

3. Busarev V., Petrova E., Irsmambetova T.R., et al., 2021, Icarus, 369, id. 114634

4. Busarev V., Petrova E., Shcherbina M.P., et al., 2023, Solar System Research, 57, 5, p. 449

5. Busarev V., Petrova E., Puzin V.B., et al., 2024, Solar System Research, 58, 3, p. 315

6. Chandler C., Kueny J., Trujillo Ch., et al., 2020, Astrophysical Journal Letters, 892, 2, id. L38

7. Chandler C., Trujillo Ch., Oldroyd W.J., et al., 2024, Astronomical Journal, 167, 4, id. 156

8. Colwell J., Gulbis A., Horányi M., et al., 2005, Icarus, 175, 1, p. 159

9. Criswell D., 1972, Proc. Third Lunar Science Conf., Geochim. Cosmochim. Acta, Suppl. 3, 3, p. 2671

10. Hsieh H., Micheli M., Kelley M.S., et al., 2023, Planetary Science Journal, 4, 3, id. 43

11. Jarosewich C., 1990, Meteoritics, 25, 4, p. 323

12. Jewitt D., 2012, Astronomical Journal, 143, 3, id. 66

13. Lee P., 1996, Icarus, 124, 1, p. 181

14. Matthews L., Shotorban B., Hyde T.W., 2018, Physical Review E, 97, id. 053207

15. Nitter T. and Havnes O., 1992, Earth, Moon, and Planets, 56, 1, p. 7

16. Poppe A., Zimmerman M., Halekas J.S., et al., 2015, Planetary and Space Science, 119, p. 111

17. Rennilson J. and Criswell D., 1974, Moon, 10, 2, p. 121

18. Schorghofer N., 2008, Astrophysical Journal, 682, 1, p. 697

Login or Create
* Forgot password?