UDK 53 Физика
UDK 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
UDK 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
UDK 523 Солнечная система
UDK 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
UDK 52-1 Метод изучения
UDK 52-6 Излучение и связанные с ним процессы
GRNTI 41.00 АСТРОНОМИЯ
GRNTI 29.35 Радиофизика. Физические основы электроники
GRNTI 29.31 Оптика
GRNTI 29.33 Лазерная физика
GRNTI 29.27 Физика плазмы
GRNTI 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
OKSO 03.06.01 Физика и астрономия
OKSO 03.05.01 Астрономия
OKSO 03.04.03 Радиофизика
BBK 2 ЕСТЕСТВЕННЫЕ НАУКИ
BBK 223 Физика
TBK 614 Астрономия
TBK 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
The observational data on 58 pre-main sequence (PMS) double-lined spectroscopic binaries (SB2) and 115 stars with protoplanetary disks are compiled for statistical investigation. These stars are located in different star-forming regions. The constructed distributions of young stars by component masses, taking into account the effects of observational selection (discovery probability and/or occupied volume), are approximated with a power law $dN \sim M^{-\Gamma} d\log{M}$. The slopes are determined on the interval from the maximum of the distributions to the largest mass value and are equal to $\Gamma= 0.92 \pm 0.23$ for the components of SB2 systems and $\Gamma = 1.51 \pm 0.30$ for the stars with disks, respectively, which are close to the Salpeter's mass function. The most probable values of the mass are $M_p= 0.48 \pm 0.02$ $M_{\odot}$ for stars with protoplanetary disks and $M_p= 0.95 \pm 0.05$ $M_{\odot}$ for SB2 components.
stars: pre-main sequence, binaries: spectroscopic, mass function; methods: statistical
1. Baraffe I., Homeier D., Allard G., et al., 2015, Astronomy \& Astrophysics, 577, id. A42
2. Dotter A., Chaboyer B., Jevremovi c D., et al., 2008, Astrophys. Journal Supplement, 178, 1, p. 89
3. Dudorov A.E. and Eretnova O.V., 2021, Chelyabinskiy Fiziko-Matematicheskiy Zhurnal, 6, p. 347
4. Eretnova O.V., 2023, Astronomy Reports, 67, 9, p. 902
5. Frasca A., Alonso-Santiago J., Catanzaro G., et al., 2023, Astronomy \& Astrophysics, 677, id. A154
6. Garufi A., Ginski C., van Holstein R.G., et al., 2024, Astronomy \& Astrophysics, 685, id. A53
7. Ginski C., Garufi A., Benisty M., et al., 2024, Astronomy \& Astrophysics, 685, id. A52
8. Guilloteau S., Simon M., Pi \'e tu V., et al., 2014, Astronomy \& Astrophysics, 567, id. A117
9. Istomin L.F., 1978, Zvezdnye skopleniya i dvojnye sistemy, p. 148
10. Lee Y.-N., Offner S.S.R., Hennebelle P., et al., 2020, Space Science Reviews, 216, 4, id. 70
11. Popov M.V., 1970, Peremennye zvezdy, 17, p. 209
12. Simon M., Guilloteau S., Besk T. L., et al., 2019, Astrophysical Journal, 884, 1, id. 42
13. Valeg a rd P.-G., Ginski C., Derkink A., et al., 2024, Astronomy \& Astrophysics, 685, id. A54