UDK 53 Физика
UDK 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
UDK 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
UDK 523 Солнечная система
UDK 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
UDK 52-1 Метод изучения
UDK 52-6 Излучение и связанные с ним процессы
GRNTI 41.00 АСТРОНОМИЯ
GRNTI 29.35 Радиофизика. Физические основы электроники
GRNTI 29.31 Оптика
GRNTI 29.33 Лазерная физика
GRNTI 29.27 Физика плазмы
GRNTI 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
OKSO 03.06.01 Физика и астрономия
OKSO 03.05.01 Астрономия
OKSO 03.04.03 Радиофизика
BBK 2 ЕСТЕСТВЕННЫЕ НАУКИ
BBK 223 Физика
TBK 614 Астрономия
TBK 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
An acute problem in the study of the solar chromosphere is the following obvious contradiction between the results of radio astronomical measurements of the height (extension) of the chromosphere and model calculations made on the basis of classical standard atmospheric models: the height of the chromosphere according to radio data is significantly greater than the model calculations. This is largely due to the fact that the widely used models are based on UV observations and, in addition, are one-dimensional and do not take into account the strong structural inhomogeneity of the chromosphere. Numerous attempts to ``improve'' the models by introducing various elements of inhomogeneity and ``fit'' them to radio data are purely empirical and are not substantiated theoretically. In such a situation, it is important to obtain more accurate and reliable radio observation data. This is all the more important because such data can serve as a basis for testing the recently developed 3D inhomogeneous theoretical models of the solar atmosphere. The article presents new data obtained from observations of a partial solar eclipse on June 10, 2021, using the RT-22 radio telescope of the Lebedev Physical Institute at a wavelength of 1.4 cm: the estimate of the radio radius is not more than 13''. The contradictions mentioned above remain significant.
Sun: chromosphere, radio radiation, solar eclipse
1. Alissandrakis C.E., Patsourakos S., Nindos A., et al., 2017, Astronomy & Astrophysics, 605, id. A78
2. Bastian T.S., Ewell M.W.Jr., Zirin H., 1993, Astrophysical Journal, 415, p. 364
3. Belkora L., Hudford G., Gary D., et al., 1992, Astrophysical Journal, 400, p. 692
4. Ewell M.W., Zirin H., Jensen J.B., et al., 1993, Astrophysical Journal, 403, p. 426
5. Ivanov D.V., Rakhimov I.A., Diakov A.A., et al. , 2023, Transactions of IAA RAS, 65. p. 7
6. Loukitcheva M.A. and Nagnibeda V.G., 2000, Proceedings of the 1st Solar and Space Weather Euroconference, ed. A. Wilson, 463, p. 363
7. Loukitcheva M., Solanki S., Carlsson M., et al., 2004, Astronomy & Astrophysics, 419, p. 747
8. Loukitcheva M., Solanki S.K., Carlsson M., et al., 2015, Astronomy & Astrophysics, 575, id. A15
9. Nagnibeda V.G. and Piotrovich V.V., 1987, Trudy Astron. Obs. Leningr. Univ., 41, p. 5
10. Nagnibeda V.G. and Rozanov B.A., 1998, Advances in Solar Physics, 2nd Euro conf; ASPS Conf. Series, 155, p. 416
11. Nagnibeda V.G., Topchilo N.A., Loukitcheva M.A., et al., 2021, Geomagnetism and Aeronomy, 61, 8, p. 1150
12. Shklovsky I.S., 1962, Physics of the Solar Corona, State Publishing House of Physics and Mathematics Literature
13. White S.N. and Kundu M., 1994, Infrared Solar Physics: proceedings of the 154th Symposium of the International Astronomical Union, ed. D.M. Rabin, John T. Jefferies, and C. Lindsey, p. 167
14. Zirin H., 1996, Solar Physics, 169, 2, p. 313