Novosibirsk State Technical University
Institute of Astronomy of the Russian Academy of Sciences
UDK 53 Физика
UDK 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
UDK 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
UDK 523 Солнечная система
UDK 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
UDK 52-1 Метод изучения
UDK 52-6 Излучение и связанные с ним процессы
GRNTI 41.00 АСТРОНОМИЯ
GRNTI 29.35 Радиофизика. Физические основы электроники
GRNTI 29.31 Оптика
GRNTI 29.33 Лазерная физика
GRNTI 29.27 Физика плазмы
GRNTI 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
OKSO 03.06.01 Физика и астрономия
OKSO 03.05.01 Астрономия
OKSO 03.04.03 Радиофизика
BBK 2 ЕСТЕСТВЕННЫЕ НАУКИ
BBK 223 Физика
TBK 614 Астрономия
TBK 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
Atomic oxygen, due to its unique chemical properties, is widely used in astrophysics to study chemical composition, nucleosynthesis conditions, and the processes of formation and evolution. The recent detection of the O I 1304 Å and 7774 Å lines in the upper atmospheres of exoplanets using space and ground-based telescopes opens the possibility to evaluate its abundance in these objects and constrain important atmospheric parameters. However, the simple approximation of thermodynamic equilibrium is often inaccurate in describing the formation and absorption for many spectral lines in stars and hot exoplanets. The development of a kinetic model that takes into account detailed radiative and collisional processes in advanced atomic models is required to interpret the observations. In this work we for the first time analyze the advantages of transit absorption measurement of two oxygen lines simultaneously.
planets and satellites: atmospheres; line: profiles; atmospheric effects; methods: numerical
1. Barklem P.S., 2006, Astronomy & Astrophysics, 462, p. 781
2. Ben-Jaffel L. and Ballester G.E., 2013, Astronomy & Astrophysics, 553, id. A52
3. Ben-Jaffel L. and Hosseini S.S., 2010, Astrophysical Journal, 709, p. 1284
4. Borsa F., Fossati L., Koskinen T., et al., 2021, Nature Astronomy, 6, p. 226
5. Fossati L., Young M.E., Shulyak D., et al., 2021, Astronomy & Astrophysics, 653, id. A52
6. Khodachenko M.L., Shaikhislamov I.F., Lammer H., et al., 2017, Astrophysical Journal, 847, p. 126
7. Madhusudhan N., Lee K.K.M., Mousis O., 2012, Astrophysical Journal, 759, id. L40
8. McWilliam A., 1997, Annual Review of Astronomy and Astrophysics, 35, p. 503
9. Oklopcic A. and Hirata C.M., 2018, Astrophysical Journal, 855, id. L11
10. Salz M., Czesla S., Schneider P.C., et al., 2016, Astronomy & Astrophysics, 586, id. A75
11. Shaikhislamov I.F., Khodachenko M.L., Sasunov Y.L., et al., 2014, Astrophysical Journal, 795, p. 132
12. Sitnova T.M., Mashonkina L.I., Ryabchikova T.A., 2013, Astronomy Letters, 39, p. 126
13. Tasitsiomi A., 2006, Astrophysical Journal, 645, p. 792
14. Tinsley B.M., 1979, Astrophysical Journal, 229, p. 1046
15. Trammell G.B., Arras P., Li Z.-Y., 2011, Astrophysical Journal, 728, p. 152
16. Vidal-Madjar A., Desert J.-M., Lecavelier des Etangs A., et al., 2004, Astrophysical Journal, 604, p. L69