Russian Federation
UDK 53 Физика
UDK 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
UDK 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
UDK 523 Солнечная система
UDK 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
UDK 52-1 Метод изучения
UDK 52-6 Излучение и связанные с ним процессы
GRNTI 41.00 АСТРОНОМИЯ
GRNTI 29.35 Радиофизика. Физические основы электроники
GRNTI 29.31 Оптика
GRNTI 29.33 Лазерная физика
GRNTI 29.27 Физика плазмы
GRNTI 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
OKSO 03.06.01 Физика и астрономия
OKSO 03.05.01 Астрономия
OKSO 03.04.03 Радиофизика
BBK 2 ЕСТЕСТВЕННЫЕ НАУКИ
BBK 223 Физика
TBK 614 Астрономия
TBK 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
The knowledge of systematic velocity radial profiles in the star-forming cores is important for theoretical models. We analyzed the HCO$^+$(1-0) spectral maps of five massive cores from the MALT90 database associated with the regions of high-mass star formation at different stages of evolution. We fitted the maps calculated in the framework of spherically symmetric model into observed ones. An approach based on the principal component analysis and the k-nearest neighbors method was used to find minimum of the error function between model and observed spectral maps. Radial profiles of density, turbulent and systematic velocity are obtained. Densities in the cores decrease with radial distance with power-law indices ranging from 1.5 to 2.5, turbulent velocities decrease with power-law indices ranging from 0.3 to 0.45. Systematic (infall) velocity profiles in the cores are close to $r^{-0.1}$ which differs from what is expected for free fall. Analysis of the $^{13}$CO (2-1) SEDIGISM data for three sample objects has revealed the V-shape features on the position-velocity profiles which implies motions from surrounding gas to the cores. Taken together, the results support the scenario of globally contracting cores which interact with their surroundings.
stars: formation, dense cores; methods: laboratory: molecular, modelling
1. Csengeri T., Bontemps S., Wyrowski F., et al., 2017, Astronomy & Astrophysics, 601, id. A60
2. Guzmán A., Sanhueza P., Contreras Y., et al., 2015, Astrophysical Journal, 815, 2, id. 130
3. Jackson J., Rathborne J., Foster J., et al., 2013, Publ. Astron. Soc. Australia, 30, id. e057
4. Ladeyschikov D., Bayandina O., Sobolev A., 2019, Astronomical Journal, 158, 6, id. 233
5. Lin Y., Csengeri T., Wyrowski F., et al., 2019, Astronomy & Astrophysics, 631, id. A72
6. McKee C. and Tan J., 2003, Astrophysical Journal, 585, 2, p. 850
7. Pirogov L. and Zemlyanukha P., 2021, Astronomy Reports, 65, 2, p. 82
8. Pirogov L., Zemlyanukha P., Dombek E., et al., 2023, Astronomy Reports, 67, 12, p. 1355
9. Rathborne J., Whitaker J., Jackson J., et al., 2016, Publ. Astron. Soc. Australia, 33, id. e030
10. Schuller F., Menten K., Contreras Y., et al., 2009, Astronomy & Astrophysics, 504, 2, p. 415
11. Schuller F., Urquhart J., Csengeri T., et al., 2021, Monthly Notices of the Royal Astronomical Society, 500, 3, p. 3064
12. Shu F., 1977, Astrophysical Journal, 214, p. 488
13. Urquhart J., Wells M., Pillai T., et al., 2022, Monthly Notices of the Royal Astronomical Society, 510, 3, p. 3389
14. Vázquez-Semadeni E., Palau A., Ballesteros-Paredes J., et al., 2019, Monthly Notices of the Royal Astronomical Society, 490, 3, p. 3061
15. Whitworth A. and Summers D., 1985, Monthly Notices of the Royal Astronomical Society, 214, p. 1
16. Yoo H., Kim K., Cho J., et al., 2018, Astrophysical Journal Supplement, 235, 2, id. 31
17. Zhou J., Wyrowski F., Neupane S., et al., 2023, Astronomy & Astrophysics, 676, id. A69