MAGNETIC RECONNECTION FLUX IN ERUPTIVE AND CONFINED SOLAR FLARES
Abstract and keywords
Abstract (English):
The magnetic properties of 59 flare events (38 eruptive and 21 confined) of GOES class M5.0 and above between February 2011 and December 2022 were analyzed. To identify the statistical properties of magnetic reconnection fluxes, we used the observational data from Solar Dynamics Observatory. The flare durations were analyzed using data from the GOES. The correlation between the GOES peak X-ray flux of a flare and magnetic reconnection flux is strong both for confined and eruptive flares. Eruptive flares show statistically larger magnetic reconnection flux and ribbon area than confined flares. The magnetic reconnection flux is strongly correlated with the flare duration. There is an approximately linear relationship between rise and decay times: the longer the rise time, the longer the decay time. We found a relation between the fraction of active regions (ARs) involved in reconnection process and the eruptive character of large flares. The probability that AR-induced flares will be associated with a coronal mass ejection (CME) increases with the fraction of ARs involved in the reconnection.

Keywords:
Sun: magnetic fields, flares, coronal mass ejection
Text
Text (PDF): Read Download
References

1. Gopasyuk O.S., 2024, Geomagnetism and Aeronomy, 64, 8 in press

2. Kazachenko M.D., 2023, Astrophysical Journal, 958, 2, id. 104

3. Li T., Hou Y., Yang S., et al., 2020, Astrophysical Journal, 900, 2, id. 128

4. Toriumi S., Schrijver C.J., Harra L.K., et al., 2017, Astrophysical Journal, 834, 1, id. 56

5. Tschernitz J., Veronig A.M., Thalmann J.K., et al., 2018, Astrophysical Journal, 853, 1, id. 41

Login or Create
* Forgot password?