UDK 53 Физика
UDK 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
UDK 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
UDK 523 Солнечная система
UDK 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
UDK 52-1 Метод изучения
UDK 52-6 Излучение и связанные с ним процессы
GRNTI 41.00 АСТРОНОМИЯ
GRNTI 29.35 Радиофизика. Физические основы электроники
GRNTI 29.31 Оптика
GRNTI 29.33 Лазерная физика
GRNTI 29.27 Физика плазмы
GRNTI 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
OKSO 03.06.01 Физика и астрономия
OKSO 03.05.01 Астрономия
OKSO 03.04.03 Радиофизика
BBK 2 ЕСТЕСТВЕННЫЕ НАУКИ
BBK 223 Физика
TBK 614 Астрономия
TBK 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
The magnetic properties of 59 flare events (38 eruptive and 21 confined) of GOES class M5.0 and above between February 2011 and December 2022 were analyzed. To identify the statistical properties of magnetic reconnection fluxes, we used the observational data from Solar Dynamics Observatory. The flare durations were analyzed using data from the GOES. The correlation between the GOES peak X-ray flux of a flare and magnetic reconnection flux is strong both for confined and eruptive flares. Eruptive flares show statistically larger magnetic reconnection flux and ribbon area than confined flares. The magnetic reconnection flux is strongly correlated with the flare duration. There is an approximately linear relationship between rise and decay times: the longer the rise time, the longer the decay time. We found a relation between the fraction of active regions (ARs) involved in reconnection process and the eruptive character of large flares. The probability that AR-induced flares will be associated with a coronal mass ejection (CME) increases with the fraction of ARs involved in the reconnection.
Sun: magnetic fields, flares, coronal mass ejection
1. Gopasyuk O.S., 2024, Geomagnetism and Aeronomy, 64, 8 in press
2. Kazachenko M.D., 2023, Astrophysical Journal, 958, 2, id. 104
3. Li T., Hou Y., Yang S., et al., 2020, Astrophysical Journal, 900, 2, id. 128
4. Toriumi S., Schrijver C.J., Harra L.K., et al., 2017, Astrophysical Journal, 834, 1, id. 56
5. Tschernitz J., Veronig A.M., Thalmann J.K., et al., 2018, Astrophysical Journal, 853, 1, id. 41