SIMULATION OF THE Hα ABSORPTION FOR THE HOT JUPITER HAT-P-32 B
Section: EXOPLANETS
Abstract and keywords
Abstract (English):
The paper presents the results of modeling the absorption spectrum in the Hα and He 10830 Å lines for the hot Jupiter HAT-P-32 b. The simulation was carried out using a 3D hydrodynamic model coupled to a Monte Carlo model of Lyα photon transfer. It was determined that to explain the absorption in both lines at a ratio H/He=99/1, high values of the XUV flux and stellar Lyα flux are required: FXUV=100 erg cm2 s1 and ILyα=600 erg cm2 s1, which may indicate high activity of the star. New parameters were also found that describe the absorption at H/He=97/3 while requiring less extreme FXUV=25 erg cm2 s1 and ILyα=600 erg cm2 s1. Monte Carlo modeling showed that the absorption in the Hα line is formed by stellar photons producing H(2) concentrations at a level of 102103 cm3 in the atmospheric layer up to 2Rp, where the absorption occurs.

Keywords:
planets and satellites: atmospheres; radiative transfer; scattering; hydrodynamics
Text
Text (PDF): Read Download
References

1. Czesla S., Lampon M., Sanz-Forcada J., et al., 2022, Astronomy & Astrophysics, 657, id. A6

2. Linsky J.L., France K., Ayres T., 2013, Astrophysical Journal, 766, 2, id. A69

3. Miroshnichenko I.B., Shaikhislamov I.F., Berezutskii A.G., et al., 2021, Astronomy Reports, 65, p. 61

4. Shaikhislamov I.F., Khodachenko M.L., Lammer H., et al., 2020, Monthly Notices of the Royal Astronomical Society, 491, p. 3435

5. Yan D., Guo J., Seon K., et al., 2024, Astronomy and Astrophysics, 686, id. A208

6. Zhang Z., Morley C.V., Gully-Santiago M., et al., 2023, Science Advances, 9, id. eadf8736

Login or Create
* Forgot password?