UDK 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
UDK 52 Астрономия. Геодезия
UDK 53 Физика
UDK 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
UDK 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
UDK 523 Солнечная система
UDK 52-1 Метод изучения
UDK 52-6 Излучение и связанные с ним процессы
GRNTI 41.27 Звездные системы
GRNTI 41.00 АСТРОНОМИЯ
GRNTI 29.35 Радиофизика. Физические основы электроники
GRNTI 29.31 Оптика
GRNTI 29.33 Лазерная физика
GRNTI 29.27 Физика плазмы
GRNTI 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
OKSO 03.06.01 Физика и астрономия
OKSO 03.05.01 Астрономия
OKSO 03.04.03 Радиофизика
BBK 22 Физико-математические науки
BBK 2 ЕСТЕСТВЕННЫЕ НАУКИ
BBK 223 Физика
TBK 61 Физико-математические науки
TBK 614 Астрономия
TBK 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
The dynamics of intergalactic gas accretion in a gas-rich spiral galaxy has been studied. We use numerical simulations to determine the conditions that lead to the formation of counter-rotating stellar and gas components within the galaxy and promote the influx of gas into the central part of the galaxy with a radius of less than one kiloparsec. The focus is on the dynamic interaction between the intergalactic flow and the gas-rich disc galaxy. The study of the mechanism by which gas is supplied to the central region to fuel the activity of galactic nuclei is a critical part of our work. The retrograde fall of the gas forms a massive, concentrated gas halo at the center of the galaxy, which may provide fuel for the activity of galactic nuclei. An angle of incidence of the gas flow of about 20 degrees to the galactic plane is the most effective and provides maximum gas concentration. Deviations from this angle lead to a decrease in the velocity of the gas flow into the galactic center. The prograde infall of intergalactic gas is incapable of cardinal disruption of the disc and does not result in an effective inflow of gas within 1 kpc radius. This accretion mode provides 100 times less gas mass within the 1 kpc radius compared to retrograde infall. An important additional result of retrograde accretion is the appearance of rotating gas rings at the periphery of the galaxy, which are mainly formed by falling intergalactic gas. The inclination of these rings with respect to the galactic plane varies widely, from 10 to 90 degrees, and depends on the angle of incidence of the intergalactic gas. The numerical simulations of counter-rotating stellar-gas discs cover all stages of the interaction with the falling intergalactic flow over a period of about 7 billion years.
physics and evolution of galaxies: gas accretion; active galactic nuclei; polar rings
1. Blumenthal K.A. and Barnes J.E., 2018, Monthly Notices of the Royal Astronomical Society, 479, p. 3952
2. Combes F., Moiseev A., Reshetnikov V., Astronomy \& Astrophysics, 2013, 554, id. A11
3. Khoperskov S., Zinchenko I., Avramov B., et al., 2021, Monthly Notices of the Royal Astronomical Society, 500, 3, p. 3870
4. Khrapov S.S. and Khoperskov A.V., 2024, Open Astronomy, 33, 1, id. 20220231
5. La Marca A., Margalef-Bentabol B., Wang L., et al., 2024, arXiv:2407.18238 [ astro-ph.GA ]
6. Moiseev A.V., Smirnova K.I., Smirnova A.A., et al., 2011, Monthly Notices of the Royal Astronomical Society, 418, 1, p. 244
7. Mosenkov A.V., Bahr S.K.H., Reshetnikov V.P., et al., 2024, Astronomy \& Astrophysics, 681, id. L15
8. Sharma R.S., Choi E., Somerville R.S., et al., 2024, Monthly Notices of the Royal Astronomical Society, 527, 3, p. 9461
9. Smirnov. D.V. and Reshetnikov V.P., 2020, Astronomy Letters, 46, 8, p. 501