UDK 53 Физика
UDK 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
UDK 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
UDK 523 Солнечная система
UDK 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
UDK 52-1 Метод изучения
UDK 52-6 Излучение и связанные с ним процессы
GRNTI 41.00 АСТРОНОМИЯ
GRNTI 29.35 Радиофизика. Физические основы электроники
GRNTI 29.31 Оптика
GRNTI 29.33 Лазерная физика
GRNTI 29.27 Физика плазмы
GRNTI 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
OKSO 03.06.01 Физика и астрономия
OKSO 03.05.01 Астрономия
OKSO 03.04.03 Радиофизика
BBK 2 ЕСТЕСТВЕННЫЕ НАУКИ
BBK 223 Физика
TBK 614 Астрономия
TBK 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
We present the study of the He-weak star HD 188101. Using spectral observations obtained with the Main stellar spectrograph (MSS) and the Nasmyth echelle spectrograph (NES) mounted on the BTA SAO RAS and the data from the literature, we determined the fundamental parameters: $T_{\rm eff}=15600 \pm 400$ K, $\log g_{\rm spec} = 3.87 \pm 0.13$, $R = 2.1-3.1$ $R_{\odot}$, $M = 3.8-4.8$ $M_{\odot}$. Chemical abundances were determined by the synthetic spectrum method: under the LTE assumption for He, N, Ti, Fe and without LTE for C, O, Mg, Si. For Si and Fe, overabundance of about 0.6 dex relative to the solar abundance was found. The non-LTE calculations with the stellar Si abundance lead to consistent abundances from lines of Si II and Si III, while the difference between LTE abundances amounts to 0.8 dex.
stars: chemically peculiar, abundances, atmospheres, magnetic fields
1. Alexeeva S., Ryabchikova T., Mashonkina L., et al., 2018, Astrophysical Journal, 866, 2, id. 153
2. Alexeeva S., Ryabchikova T., Mashonkina L., 2021, Monthly Notices of the Royal Astronomical Society, 462, 1, p. 1123
3. Asplund M., Amarsi A., Grevesse N., 2021, Astronomy & Astrophysics, 653, id. A141
4. Butler K., 1984, Ph.D. Thesis, University of London
5. Castelli F. and Kurucz R.L., 2003, IAU by the Astronomical Society of the Pacific, 210, p. A20
6. Dotter A., 2016, Astrophysical Journal Supplement Series, 222, 1, id. 8
7. Gaia Collaboration, Brown A.G.A., Vallenari A., et al., 2021, Astronomy & Astrophysics, 649, id. A1
8. Giddings J.R., 1981, Ph.D. Thesis, University of London
9. Gontcharov G.A., 2017, Astronomy Letters, 43, 7, p. 472
10. Hümmerich S., Mikulášek Z., Paunzen E., et al., 2018, Astronomy & Astrophysics, 619, id. A98
11. Kochukhov O., 2018, Astrophysics Source Code Library, record ascl:1805.015
12. Lanz T. and Hubeny I., 2007, Astrophysical Journal Supplement Series, 169, 1, p. 83
13. van Leeuwen F., 2007, Astronomy & Astrophysics, 474, 2, p. 653
14. Mashonkina L., 2020, Monthly Notices of the Royal Astronomical Society, 493, 4, p. 6095
15. Michaud G., 1970, Astrophysical Journal, 160, p. 641
16. Piskunov N. and Valenti J.A., 2017, Astronomy & Astrophysics, 597, id. A16
17. Preston G.W., 1974, Annual Review of Astronomy and Astrophysics, 12, p. 257
18. Przybilla N., Nieva M.-F, Butler K., 2011, Journal of Physics Conference Series, 328, 1, id. 012015
19. Ryabchikova T., Piskunov N., Kurucz R.L., et al., 2015, Physica Scripta, 90, 5, id. 054005
20. Shulyak D., Tsymbal V., Ryabchikova T., et al., 2004, Astronomy & Astrophysics, 428, p. 993
21. Sitnova T.M., Mashonkina L.I., Ryabchikova T.A., 2004, Astronomy Letters, 39, 2, p. 126
22. Tsymbal V., Ryabchikova T., Sitnova T., 2019, ASP Conference Series, 518, p. 247
23. Valenti J. and Piskunov N., 1996, Astronomy and Astrophysics Supplement, 118, p. 595
24. Yakunin I., Semenko E., Romanyuk I., et al., 2023, Astrophysical Bulletin, 78, 2, p. 141