UDK 53 Физика
UDK 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
UDK 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
UDK 523 Солнечная система
UDK 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
UDK 52-1 Метод изучения
UDK 52-6 Излучение и связанные с ним процессы
GRNTI 41.00 АСТРОНОМИЯ
GRNTI 29.35 Радиофизика. Физические основы электроники
GRNTI 29.31 Оптика
GRNTI 29.33 Лазерная физика
GRNTI 29.27 Физика плазмы
GRNTI 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
OKSO 03.06.01 Физика и астрономия
OKSO 03.05.01 Астрономия
OKSO 03.04.03 Радиофизика
BBK 2 ЕСТЕСТВЕННЫЕ НАУКИ
BBK 223 Физика
TBK 614 Астрономия
TBK 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
The determination of star cluster masses is crucial for the study of cluster dynamics, the evaluation of gravitational binding, and the assessment of star formation efficiency. Traditional photometric approaches face challenges such as incompleteness, the problem of evaluating the uncertainty in the mass-luminosity relation, contamination by binaries, and so on. Dynamic (virial) approaches, which provide an estimate of the total cluster mass, have a difficulty in estimating the velocity dispersion. This study proposes a method to calculate the dynamic masses by using proper motions, taking into account for their observational errors. Using modern data for open clusters and samples of their probable members, we estimate dynamic masses of 833 open clusters. The resulting dynamic mass distribution is nearly log-normal with the mode of $2400\,M_\odot$.
open clusters and associations: general; stars: kinematics and dynamics; methods: statistical
1. Borodina O., Carraro G., Seleznev A., and Danilov V., 2021, Astrophysical Journal, 908, p. 60
2. Chandrasekhar S., 1942, Principles of stellar dynamics , The University of Chicago press
3. D'Agostino R., 1971, Biometrika, 58, p. 341
4. Danilov V. and Loktin A., 2015, Astrophysical Bulletin, 70, p. 414
5. Dias W., Monteiro H., Moitinho A., et al. , 2021, Monthly Notices of the Royal Astronomical Society, 504, p. 356
6. Eker Z., Soydugan F., Soydugan E., et al., 2015, Astronomical Journal, 149, p. 131
7. Gaia Collaboration , Vallenari A., Brown A., et al., 2023, Astronomy&Astrophysics, 674, id. A1
8. Hunt E. and Reffert S., 2023, Astronomy&Astrophysics, 673, id. A114
9. Hunt E. and Reffert S., 2024, Astronomy&Astrophysics, 686, id. A42
10. King I., 1962, Astronomical Journal, 67, p. 471
11. Kulesh M., Samirkhanova A., Carraro G., et al., 2024, Astronomical Journal, 167, p. 212
12. Kutuzov S. and Osipkov L., 1980, Soviet Astronomy, 24, p. 17
13. Seleznev A., 2016, Monthly Notices of the Royal Astronomical Society, 456, p. 3757
14. Seleznev A., Carraro G., Capuzzo-Dolcetta , R., et al., 2017, Monthly Notices of the Royal Astronomical Society, 467, p. 2517
15. Taylor M., 2005, ASP Conf. Ser., 347, p. 29