Kazan Federal University
UDK 524.3 Звезды
UDK 524.6 Галактика. Млечный Путь
UDK 53 Физика
UDK 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
UDK 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
UDK 523 Солнечная система
UDK 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
UDK 52-1 Метод изучения
UDK 52-6 Излучение и связанные с ним процессы
GRNTI 41.00 АСТРОНОМИЯ
GRNTI 29.35 Радиофизика. Физические основы электроники
GRNTI 29.31 Оптика
GRNTI 29.33 Лазерная физика
GRNTI 29.27 Физика плазмы
GRNTI 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
OKSO 03.06.01 Физика и астрономия
OKSO 03.05.01 Астрономия
OKSO 03.04.03 Радиофизика
BBK 2 ЕСТЕСТВЕННЫЕ НАУКИ
BBK 223 Физика
TBK 614 Астрономия
TBK 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
We present a study of the flaring radio variability of four microquasars during last ten years with RATAN-600. The main aim of researches is a study of the daily light curves at seven frequencies of 1.2-30 GHz and in multi-azimuthal (MA) mode, when for 5h the fluxes are measured every 5-10 minutes at 4.7 and 8.2 GHz. In SS 433 dozens of bright flares were detected over last ten years. The brightest flare (5.5 Jy at 2.3 GHz) in the total history of GRS 1915+105 research occured in August 2023. In 2024 we have detected five giant radio flares in Cyg X-3 during hypersoft-to-hard X-ray states transits. These flares reached fluxes of 13-18 Jy and have similar properties: optically thick phase in the spectra in the beginning of a flare and the exponential fading for 5-30 days. We relate these events with an efficient formation of relativistic jets during the accretion of matter from a normal star. In the Gamma-ray binary LSI+61d303 with regular flares every 26.5 days, we have detected second period of 26.93 days that can be precession period of jets. We find a clear similarity of bright flares in microquasars.
X-rays: binaries; radio continuum: stars; radiation mechanisms: non-thermal, synchronton radiation
1. Broderick J., Russell T., Fender R., et al., 2021, MNRAS, 504, p. 1482
2. Cherepashchuk A., Dodin A., Postnov K., et al., 2022, Astronomy Reports, 66, p. 451
3. Egron E., Pellizzoni A., Righini S., et al., 2021, Astrophysical Journal, 906, id. 10
4. Hjellming R. and Johnston K., 1988, Astrophysical Journal, 328, p. 600
5. Marti J., Paredes J., and Estalella R., 1992, Astronomy and Astrophysics, 258, p. 309
6. Medvedev P., Khabibullin I., Semena A., et al., 2022, Astronomy Letters, 48, p. 389
7. Trushkin S., Bursov N., Shevchenko A., et al., 2021-2024, The Astronomer's Telegram, # 14821, # 15142, # 15671, # 15709, # 15964, # 15974, # 16168, # 16289, # 16581
8. Trushkin S., Shevchenko A., Bursov N., et al., 2023, Astrophysical Bulletin, 78, p. 225
9. Veledina A., Muleri F., Dovciak M., et al., 2023, Astrophysical Journal, 958, p. L16
10. Veledina A., Muleri F., Poutanen J., et al., 2024, Nature Astronomy, 8, p. 1031