UDK 53 Физика
UDK 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
UDK 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
UDK 523 Солнечная система
UDK 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
UDK 52-1 Метод изучения
UDK 52-6 Излучение и связанные с ним процессы
GRNTI 41.00 АСТРОНОМИЯ
GRNTI 29.35 Радиофизика. Физические основы электроники
GRNTI 29.31 Оптика
GRNTI 29.33 Лазерная физика
GRNTI 29.27 Физика плазмы
GRNTI 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
OKSO 03.06.01 Физика и астрономия
OKSO 03.05.01 Астрономия
OKSO 03.04.03 Радиофизика
BBK 2 ЕСТЕСТВЕННЫЕ НАУКИ
BBK 223 Физика
TBK 614 Астрономия
TBK 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
With the help of modern navigation satellite systems it is possible to determine the coordinates of points with millimeter accuracy due to the precision measurement of the carrier phase of the navigation radio signal. However, in the course of achieving this accuracy, a nontrivial problem of resolving the integer phase ambiguity arises. The most difficult part is to determine the integer number of wavelengths between the phase centers of the transmitting antenna of the navigation satellite and the receiving antenna. An exact solution to this problem using the integer least squares method, although it exists in theory, is not applicable in practice due to the prohibitively high computational complexity. In this regard, a number of authors have developed various suboptimal methods for resolving integer phase ambiguity, which allow solving a problem with varying degrees of uncertainty. In this case, the problem can be considered satisfactorily solved for relative coordinate determinations from GPS (global positioning system) and GLONASS (global navigation satellite system) observations, as well as for absolute coordinate determinations from GPS. As for the absolute determinations of coordinates from GLONASS observations, the situation is complicated by the fact that GLONASS, unlike GPS, uses frequency-division multiple access. In other words, if all GPS navigation spacecraft broadcast navigation radio signals on a single frequency, then GLONASS satellites broadcast on different frequencies. This paper generalizes one of the modern and effective methods for resolving integer ambiguity for GPS observations, MLAMBDA, to the GLONASS system. The ultimate goal of the work is an independent algorithm for absolute determination of coordinates with millimeter accuracy using the GLONASS system. In the course of the work, the MLAMBDA formalism was generalized to navigation systems with frequency division of access, and the first results of independent coordinate determinations from GLONASS observations in absolute mode were obtained.
GNSS, GLONASS, phase ambiguity, PPP, MLAMBDA
1. Chang X.W., Yang X., and Zhou T., 2005, Journal of Geodesy, 79, p. 552
2. Teunissen P.J.G., 1995, Journal of Geodesy, 70, p. 65
3. Zumberge J.F., Heflin A., Jefferson D.C., et al., 1997, Journal of Geophysical Research, 102, B3, p. 5005