UDK 52 Астрономия. Геодезия
UDK 53 Физика
UDK 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
UDK 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
UDK 523 Солнечная система
UDK 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
UDK 52-1 Метод изучения
UDK 52-6 Излучение и связанные с ним процессы
GRNTI 41.21 Солнце
GRNTI 41.00 АСТРОНОМИЯ
GRNTI 29.35 Радиофизика. Физические основы электроники
GRNTI 29.31 Оптика
GRNTI 29.33 Лазерная физика
GRNTI 29.27 Физика плазмы
GRNTI 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
OKSO 03.06.01 Физика и астрономия
OKSO 03.05.01 Астрономия
OKSO 03.04.03 Радиофизика
BBK 2 ЕСТЕСТВЕННЫЕ НАУКИ
BBK 223 Физика
TBK 614 Астрономия
TBK 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
We investigate magnetic free energy (MFE) dynamics in the M1.2 solar flare occurred on March 15, 2015, 22:45 UT. We use the nonlinear force-free field (NLFFF) model of the coronal magnetic field on the basis of 135-second HMI vector magnetograms (standard magnetograms have a temporal resolution of 720 s) from the Heliosesmic and Magnetic Imager (HMI). Since we consider a rather long event (about 100 minutes) with several episodes of energy release of different temporal dynamics (pulsed or more gradual), we can find features of the MFE dynamics relative to the flare energy release stages using 135-second vector magnetograms. It is shown that the main MFE dissipation (approximately 30 % of the initial level) occurred during the two first subflare bursts seen in microwave hard X-ray ranges. These two bursts developed at low (less than 5 Mm) magnetic structures extremely elongated along the magnetic field polarity inversion line (PIL), while the other long-lasting bursts without appreciable MFE dissipation occurred in a growing flare arcade of magnetic loops. The obtained results are in favor of the fact that most of the MFE is localized in magnetic structures with a strong electric current at the PIL. It is possible that local monitoring of the preflare state around the PIL based on magnetic extrapolations with high temporal and spatial resolution will allow further improvement of methods for predicting solar flares. The dynamics of relative helicity are also studied in relation to the dynamics of the eruptions, and we found that the first impulsive subflares were accompanied by the most significant drop in helicity.
Sun: solar flares, magnetic fields; electric currents; eruption; hard X-ray emission
1. Liu Y., Welsch B.T., Valori G., et al., 2023, Astrophysical Journal, 942, id. 27
2. Rudenko G.V., Myshyakov I.I., 2009, Solar Physics, 257, 2, p. 287
3. Scherrer P.H., Schou J., Bush R.I., et al., 2012, Solar Physics, 275, p. 207
4. Sharykin I.N., Zimovets I.V., Myshyakov I.I., 2020, Astrophysical Journal, 893, 2, id. 159
5. Sharykin I.N., Zimovets I.V., Myshyakov I.I., et al., 2018, Astrophysical Journal, 864, id. 156
6. Sun X., Hoeksema T., Liu Y., et al., 2012, Astrophysical Journal, 748, id. 77
7. Sun X., Hoeksema J.T., Liu Y., et al., 2017, Astrophysical Journal, 839, id. 67
8. Valori G., Pariat E., Anfinogentoov S.A., et al., 2016, Space Science Reviews, 201, p. 147