УДК 53 Физика
УДК 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
УДК 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
УДК 523 Солнечная система
УДК 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
УДК 52-1 Метод изучения
УДК 52-6 Излучение и связанные с ним процессы
ГРНТИ 41.00 АСТРОНОМИЯ
ГРНТИ 29.35 Радиофизика. Физические основы электроники
ГРНТИ 29.31 Оптика
ГРНТИ 29.33 Лазерная физика
ГРНТИ 29.27 Физика плазмы
ГРНТИ 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
ОКСО 03.06.01 Физика и астрономия
ОКСО 03.05.01 Астрономия
ОКСО 03.04.03 Радиофизика
ББК 2 ЕСТЕСТВЕННЫЕ НАУКИ
ББК 223 Физика
ТБК 614 Астрономия
ТБК 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
The Big Trio programme was aimed to search for distant radio galaxies for the purpose of cosmological research. A selection of sources with steep and ultra-steep spectra was made from the radio sources discovered in a series of surveys by the Cold Experiment, which was carried out on the RATAN-600 radio telescope. The results of the studies of 113 sources in this sample were the optical identification of almost the entire sample, spectral studies of the majority of the objects (70%), spectral redshift determinations for half of them, and the discovery of three unique radio galaxies with redshifts $z>3$ and extremely high radio luminosities. New radio sky surveys with high sensitivity and angular resolution have now become available, allowing additional studies of the radio sources in the sample. These have helped to refine the continuous spectra of the sources and their radiomorphology, as well as the evolutionary state and environment of the radio galaxies. The spectral indices determined from the new radio survey data turned out to be flatter than those from the old data. Based on the spectral curvature parameter and the morphological structure of the sources in the steep spectrum (SS) sample, 10–15% are likely to be young, 40–50% are in an active state, 10% are in the fading phase, and most likely 20–25% are in the restart phase.
galaxies: active, high-redshift
1. Bonnarel F., Fernique P., Bienaym \' e O., et al., 2000, Astron. Astrophys., Suppl. Ser., 143, p. 33
2. Brocksopp C., Kaiser C. R., Schoenmakers, et al., 2011, Mon. Not. R. Astron. Soc., 410, p. 484
3. Bursov N.N., Lipovka N.M., Soboleva N.S., et al., 1996, Bulletin of the Special Astrophysics Observatory, 42, p. 5
4. Callingham J.R., Ekers R.D., Gaensler B.M., et al., 2017, Astrophys. J., 836, p. 174
5. Gopal-Krishna, Biermann P.L., Gergely L.´A., et al., 2012, Research in Astronomy and Astrophysics, 12, p. 127
6. Gordon Y.A., Boyce M.M., O’Dea C.P., et al., 2021, Astrophys. J., Suppl. Ser., 255, id. 30
7. Goss W.M., Pariiskii Y.N., Soboleva N.S., et al., 1992, Sov. Astron., 36, p. 343
8. Hurley-Walker N., Callingham J.R., Hancock P.J., et al., 2017, Mon. Not. R. Astron. Soc., 464, p. 1146
9. Intema H.T., Jagannathan P., Mooley K.P., et al., 2017, Astron. Astrophys., 598, id. A78
10. Joshi R., Krishna G., Yang X., et al., 2019, Astrophys. J., 887, p. 266
11. Kopylov A.I., Goss W.M., Parijskij Y.N., et al., 2006, Astronomy Letters, 32, p. 433
12. Lane W.M., Cotton W.D., van Velzen S., et al., 2014, Mon. Not. R. Astron. Soc., 440, p. 327
13. Liu F. K., 2004, Mon. Not. R. Astron. Soc., 347, p. 1357
14. McConnell D., Hale C.L., Lenc E., et al., 2020, Publ. Astron. Soc. Aust., 37, id. e048
15. Miley G. and De Breuck C., 2008, Astron. Astrophys., 15, p. 67
16. Missaglia V., Massaro F., Capetti A., et al., 2019, Astron. Astrophys., 626, id. A8
17. Murgia M., Parma P., Mack K. H., et al., 2011, Astron. Astrophys., 526, id. A148
18. Ochsenbein F., Bauer P., Marcout J., 2000, Astron. Astrophys., Suppl. Ser., 143, p. 23
19. Owen F.N. and Rudnick L., 1976, Astrophys. J., 205, id. L1
20. Parijskij Y.N., Goss W.M., Kopylov A.I., et al., 2000, Astronomical and Astrophysical Transactions, 19, p. 297
21. Parijskij Y.N., Kopylov A.I., Temirova A.V., et al., 2010, Astronomy Reports, 54, p. 675
22. Parijskij Y.N., Thomasson P., Kopylov A.I., et al., 2014, Mon. Not. R. Astron. Soc., 439, p. 2314
23. Peters W., Polisensky E., Brisken W., et al., 2021, American Astronomical Society Meeting Abstracts, 237, id. 211.06
24. Soboleva N.S., Pariiskii Y.N., Naugolnaya M.N., 1994, Astron. Zh., 71, p. 684
25. Taylor M.B., 2005, Astronomical Society of the Pacific Conference Series, 347, p. 29
26. Verkhodanov O.V., Erukhimov B.L., Monosov M.L., et al. 1993, Bulletin of the Special Astrophysics Observatory, 36, p. 132
27. Verkhodanov O.V., Trushkin S.A., Andernach H., et al., 2005, Bulletin of the Special Astrophysics Observatory, 58, p. 118
28. Wenger M., Ochsenbein F., Egret D., et al., 2000, Astron. Astrophys., Suppl. Ser., 143, p. 9