Special Astrophysical Observatory of the Russian Academy of Sciences
Special Astrophysical Observatory of the Russian Academy of Sciences
Crimean Astrophysical Observatory of RAS
Нижний Архыз, Карачаево-Черкесская Республика, Россия
УДК 53 Физика
УДК 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
УДК 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
УДК 523 Солнечная система
УДК 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
УДК 52-1 Метод изучения
УДК 52-6 Излучение и связанные с ним процессы
ГРНТИ 41.00 АСТРОНОМИЯ
ГРНТИ 29.35 Радиофизика. Физические основы электроники
ГРНТИ 29.31 Оптика
ГРНТИ 29.33 Лазерная физика
ГРНТИ 29.27 Физика плазмы
ГРНТИ 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
ОКСО 03.06.01 Физика и астрономия
ОКСО 03.05.01 Астрономия
ОКСО 03.04.03 Радиофизика
ББК 2 ЕСТЕСТВЕННЫЕ НАУКИ
ББК 223 Физика
ТБК 614 Астрономия
ТБК 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
Based on the Doppler observations from the FFOREST spectrograph of the 6-meter telescope (BTA) and on the photometric observations from the TESS spacecraft, we provide an updated analysis for TOI-1408, an F-type main sequence star, located 140 pc away, that hosts exoplanet TOI-1408.01. We confirm the qualitative conclusions from our initial paper: (1) a grazing transit geometry such that the planet obscures its host star by only a portion of the visible disc,(2) unreliably fitted planet radius, (3) which nonetheless has a lower bound constraint of $\sim\!1~R_{\rm Jup}$, (4) unexpectedly large planet mass of $\simeq\!1.7~M_{\rm Jup}$, and (5) significant evidence in favor of a moderately eccentric orbit with $e\simeq0.27$. This solution may suggest that the planet is likely to experience a high tidal eccentricity migration at the stage of intense orbital rounding or may indicate the possible presence of other unseen companions in the system, yet to be detected.
techniques: radial velocities, spectroscopic; planets and satellites: detection; stars: individual: TOI-1408
1. Ardilanov V.I., Murzin V.A., Afanasieva I.V., et al., 2020, Ground-Based Astronomy in Russia. 21st Century, Proc. All-Russian Conf., ed. I.I. Romanyuk, I.A. Yakunin, A.F. Valeev, D.O. Kudryavtsev, p. 115
2. Armitage P.J., 2007, arXiv:astro-ph/0701485
3. Baluev R.V., 2013, Astronomy and Computing, 2, p. 18
4. Baluev R.V., 2018, Astronomy and Computing, 25, p. 221
5. Charbonneau D., Brown T.M., Latham D.W., et al., 2000, Astrophysical Journal, 529, L45
6. Claret A., 2017, Astronomy and Astrophysics, 600, A30
7. Dawson R.I., Johnson J.A., 2018, Annual Review of Astronomy and Astrophysics, 56, p. 175
8. Dotter A., 2016, Astrophysical Journal Supplement Series, 222, p. 8
9. Galazutdinov G.A., 2022, Astrophysical Bulletin, 77, p. 519
10. Galazutdinov G.A., Baluev R.V., Valyavin G., et al., 2023, Monthly Notices of the Royal Astronomical Society, 525, L111
11. Henry G.W., Marcy G.W., Butler R.P., et al., 2000, Astrophysical Journal, 529, L41
12. Mayor M. and Queloz D., 1995, Nature, 378, p. 355
13. Takeda Y., Ohkubo M., Sadakane K., 2002, Publications of the Astronomical Society of Japan, 54, p. 451
14. Valyavin G., Beskin G., Valeev A., et al., 2022a, Astrophysical Bulletin, 77, p. 495
15. Valyavin G., Beskin G., Valeev A., et al., 2022b, Photonics, 9, p. 950
16. Valyavin G.G., Bychkov V.D., Yushkin M.V., et al., 2014, Astrophysical Bulletin, 69, p. 224
17. Valyavin G.G., Musaev F.A., Perkov A.V., et al., 2020, Astrophysical Bulletin, 75, p. 191