Special Astrophysical Observatory of the Russian Academy of Sciences
УДК 53 Физика
УДК 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
УДК 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
УДК 523 Солнечная система
УДК 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
УДК 52-1 Метод изучения
УДК 52-6 Излучение и связанные с ним процессы
ГРНТИ 41.00 АСТРОНОМИЯ
ГРНТИ 29.35 Радиофизика. Физические основы электроники
ГРНТИ 29.31 Оптика
ГРНТИ 29.33 Лазерная физика
ГРНТИ 29.27 Физика плазмы
ГРНТИ 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
ОКСО 03.06.01 Физика и астрономия
ОКСО 03.05.01 Астрономия
ОКСО 03.04.03 Радиофизика
ББК 2 ЕСТЕСТВЕННЫЕ НАУКИ
ББК 223 Физика
ТБК 614 Астрономия
ТБК 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
In this work we process infrared light curves for 13 secondary eclipses of the exoplanet HD 209458 b, obtained with the Spitzer Space Telescope. The objective of the study was to identify any discrepancies that might be attributed to the inhomogeneity of the planet's surface brightness or a difference of the planet's shape from a sphere. Firstly, an attempt was made to ascertain whether the observed midpoint of the secondary eclipse exhibited a shift from the ephemeris moment. This could indicate the presence of a hot spot on the planet's surface that is shifted from the central meridian. The analysis allowed for the correlated noise that remained in the IRAC detector data after aperture photometry by approximating the noise with a Gaussian random process. As a result, we detected two components of red noise with different time scales: $\sim\!10$ s and $\sim\!5$ min. In addition, we constructed a unified model of the effect of inhomogeneous pixel sensitivity as a periodic function of the brightness centroid coordinates, which works well for all the analyzed eclipses. According to the results, the main parameters of the HD 209458 b eclipse coincided with those obtained by other authors: a depth of $0.125 \pm 0.004$% and a shift of the observed midpoint of $-0.53 \pm 0.61$ min.
planets and satellites: surfaces, general; stars: planetary systems; techniques: photometric; methods: data analysis; stars: individual: HD 209458
1. Astropy Collaboration, Robitaille T.P., Tollerud E.J., et al., 2013, A \& A, 558, id. A33
2. Baluev R.V., 2013, Astronomy and Computing, 2, p. 18
3. Baluev R.V., 2018, Astronomy and Computing, 25, p. 221
4. Baluev R.V. and Shaidulin V.S., 2015, MNRAS, 454, 4379
5. Baluev R.V., Sokov E.N., Shaidulin V.S., et al., 2015, MNRAS, 450, p. 3101
6. Bonomo A.S., Desidera S., Benatti S., et al., 2017, A \& A, 602, id. A107
7. Bradley L., Sip o cz B., Robitaille T., et al., 2024, astropy/photutils: 1.13.0
8. de Wit J., Gillon M., Demory B.O., et al., 2012, A \& A, 548, id. A128
9. Evans T.M., Aigrain S., Gibson N., et al., 2015, MNRAS, 451, p. 680
10. Fedotov A.A. and Baluev R.V., 2022, Astronomy at the Epoch of Multimessenger Studies, Proc. All-Russian Astron. Conf. (VAK-2021), p. 227
11. Knutson H.A., Charbonneau D., Allen L.E., et al., 2007, Nature, 447, p. 183
12. Majeau C., Agol E., Cowan N.B., 2012, ApJL, 757, id. L32
13. Rauscher E. and Menou K., 2013, ApJ, 764, p. 103