OPTICAL SPECTROSCOPY OF HOST-GALAXIES OF INTERMEDIATE MASS BLACK HOLES: EVOLUTION OF CENTRAL BLACK HOLES
Аннотация и ключевые слова
Аннотация (русский):
Intermediate-mass black holes (IMBHs) with masses below ($2 \times 10^5 M_{\odot}$) are key to understanding the origin and growth mechanisms of supermassive black holes (SMBHs) in galactic nuclei. This study focuses on the search for and detailed analysis of central lightweight black holes in various galaxies. An extended sample of IMBH candidates was selected from the RCSED optical spectral catalog, followed by refined spectral observations using large telescopes, including the Magellan, SALT, Keck, and CMO telescopes. Analysis of more than 70 spectra has obtained accurate virial masses, stellar population parameters, and kinematics. One significant result includes the detection of a binary black hole system with masses of ($1.7 \times 10^5 M_{\odot})$ and $(1.4 \times 10^6 M_{\odot}$). Our results indicate that IMBHs and their low-mass SMBH counterparts do not necessarily co-evolve with their host galaxies, suggesting that super-Eddington accretion is the dominant growth mechanism. This research improves the precision of virial mass estimates and provides new insights into the $M_{\rm BH} - \sigma_{\rm bulge}$ bulge relation, with potential implications for future high-redshift SMBH observations using next-generation facilities.

Ключевые слова:
cosmology: observations; early universe; galaxies: active, nuclei, Seyfert; quasars: supermassive black holes
Список литературы

1. Abazajian K.N., Adelman-McCarthy J.K., Agüeros M.A., et al., 2009, ApJS, 182, p. 543

2. Amaro-Seoane P., Andrews J., Arca Sedda M., et al., 2023, Living Reviews in Relativity, 26, id. 2

3. Chilingarian I., Bauer F., Grishin K., et al., 2023, American Astronomical Society Meeting Abstracts, 242, id. 309.03

4. Chilingarian I., Prugniel P., Sil’chenko O., et al., 2007, Proceedings of IAU Symposium, 241, p. 175

5. Chilingarian I.V., Katkov I.Y., Zolotukhin I.Y., et al., 2018, ApJ, 863, id. 1

6. Chilingarian I.V., Zolotukhin I.Y., Katkov I.Y., et al., 2017, ApJS, 228, id. 14

7. Davies R., Schubert J., Hartl M., et al., 2016, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 9908, id. 99081Z

8. Demianenko M., Grishin K., Toptun V., et al., 2022, Astronomy at the Epoch of Multimessenger Studies, p. 359

9. Demianenko M., Grishin K., Toptun V., et al., 2024a, Astronomical Society of the Pacific Conference Series, 535, p. 283

10. Demianenko M., Pott J.-U., Polsterer K., 2024b, arXiv e-prints, arXiv:2404.06558

11. Goradzhanov V., Chilingarian I., Katkov I., et al., 2022, Astronomy at the Epoch of Multimessenger Studies, p. 367

12. Kormendy J. and Ho L.C., 2013, ARA \& A, 51, p. 511

13. Mortlock D.J., Warren S.J., Venemans B.P., et al., 2011, Nature, 474, p. 616

14. Reines A.E., Greene J.E., Geha M., 2013, ApJ, 775, id. 116

15. Schneider R., Ferrara A., Natarajan P., et al., 2002, ApJ, 571, p. 30

16. Toptun V., Chilingarian I., Grishin K., et al., 2022, Astronomy at the Epoch of Multimessenger Studies, p. 304

17. Zaw I., Rosenthal M.J., Katkov I.Y., et al., 2020, The Astrophysical Journal, 897, p. 111

Войти или Создать
* Забыли пароль?