УДК 52 Астрономия. Геодезия
УДК 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
УДК 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
УДК 523 Солнечная система
УДК 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
УДК 52-1 Метод изучения
УДК 52-6 Излучение и связанные с ним процессы
ГРНТИ 41.00 АСТРОНОМИЯ
ГРНТИ 29.35 Радиофизика. Физические основы электроники
ГРНТИ 29.31 Оптика
ГРНТИ 29.33 Лазерная физика
ГРНТИ 29.27 Физика плазмы
ГРНТИ 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
ОКСО 03.06.01 Физика и астрономия
ОКСО 03.05.01 Астрономия
ОКСО 03.04.03 Радиофизика
ББК 2 ЕСТЕСТВЕННЫЕ НАУКИ
ББК 223 Физика
ТБК 614 Астрономия
ТБК 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
The interstellar medium consists of gas and dust components, almost all of which are completely transparent at centimeter wavelengths. The main cause of radio wave scattering in the interstellar medium is ionized gas—plasma. The behavior of radio waves propagating through such a medium is described by the dispersion equation in a rarefied plasma. The plasma frequency is generally a function of position and time, because it depends on the electron density along the line of sight. The dispersion measure physically represents a column of free electrons between a pulsar and the Earth. Thus, the dispersion measure is a value that determines the delay of radiation pulses of cosmic objects. The delay of radio emission is due to the fact that the refractive index of the plasma depends on the wavelength. Long waves propagate more slowly than short ones, so a signal emitted simultaneously at different frequencies arrives to the observer at long waves later than at short ones. One type of astrophysical objects for which the pulse delay can be measured are pulsars. Since observations are always carried out in a certain wavelength band, the presence of a delay interferes with the study of the fine time structure of pulsar pulses. Without dispersion correction, pulsar observations in a wide frequency band become impossible. The presented work considers the implementation of the coherent dispersion compensation method on a heterogeneous computing structure. Processing in the spectral domain allows the simultaneous search for fast radio bursts (giant pulses), radio pulsars, and refinement of the dispersion measure of the found pulses. It is shown that the proposed implementation on modern computing accelerators allows real-time processing in a wide frequency band that meets modern requirements.
pulsars: general; instrumentation: interferometers; methods: numerical
1. Eatough R.P., Keane E.F., Lyne A.G., 2009, Monthly Notices of the Royal Astronomical Society, 395, p. 410
2. Girin I.A., Likhachev S.F., Andrianov A.S., et al., 2023, Astronomy and Computing, 45, id. 100754
3. Lorimer D.R. and Kramer M., 2005, Handbook of pulsar astronomy, Cambridge (GB): Cambridge University Press