УДК 53 Физика
УДК 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
УДК 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
УДК 523 Солнечная система
УДК 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
УДК 52-1 Метод изучения
УДК 52-6 Излучение и связанные с ним процессы
ГРНТИ 41.00 АСТРОНОМИЯ
ГРНТИ 29.35 Радиофизика. Физические основы электроники
ГРНТИ 29.31 Оптика
ГРНТИ 29.33 Лазерная физика
ГРНТИ 29.27 Физика плазмы
ГРНТИ 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
ОКСО 03.06.01 Физика и астрономия
ОКСО 03.05.01 Астрономия
ОКСО 03.04.03 Радиофизика
ББК 2 ЕСТЕСТВЕННЫЕ НАУКИ
ББК 223 Физика
ТБК 614 Астрономия
ТБК 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
Studies of magnetic white dwarfs in the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) have been carried out since 1990 with the 6-m telescope using various spectrographs and with the 1-m Zeiss-1000 telescope using the Multi-Mode Photometer-Polarimeter (MMPP). As a result, we have derived direct estimates of the longitudinal magnetic field obtained with spectropolarimetric observations and circular polarization values in the photometric mode. We observed both well-known magnetic white dwarfs and objects with no data about magnetic field. Among well-known magnetic objects, there were white dwarfs with an extremely strong magnetic field of up to hundreds megagauss and weak magnetic white dwarfs with a field of several tens kilogauss. The use of these data and the data obtained by other authors allowed time series of the observations of these objects to be several decades. Analyzing these time series, we estimated the lower limits of the evolution times of the magnetic fields of white dwarfs.
stars: white dwarfs, magnetic field, evolution
1. Aitov V.N., Valyavin G.G., Valeev A.F., et al., 2022, Astrophysical Bulletin, 77, 3, p. 301
2. Bagnulo S. and Landstreet J.D., 2021, Monthly Notices of the Royal Astronomical Society, 507, 4, p. 5902
3. Fabrika S.N., Shtol' V.G., Valyavin G.G., 1997, Astronomy Letters, 23, 1, p. 43
4. Fabrika S. and Valyavin G., 1999, ASP Conf. Ser., 169, p. 214
5. Holberg J.B., Oswalt T.D., Sion E.M., et al., 2016, Monthly Notices of the Royal Astronomical Society, 462, 3, p. 2295
6. Kepler S.O., Pelisoli I., Jordan S., et al., 2013, Monthly Notices of the Royal Astronomical Society, 429, 4, p. 2934
7. Landstreet J.D., Bagnulo S., Valyavin G.G., et al., 2012, Astronomy \& Astrophysics, 545, id. A30
8. Landstreet J.D., Bagnulo S., Martin A., et al., 2016, Astronomy \& Astrophysics, 591, id. A80
9. Landstreet J.D., Bagnulo S., Valyavin G.G., et al., 2017, Astronomy \& Astrophysics, 607, id. A92
10. Valyavin G., Bagnulo S., Monin D., et al., 2005, Astronomy \& Astrophysics, 439, 3, p. 1099
11. Valyavin G., Bagnulo S., Fabrika S., et al., 2006, Astrophysical Journal, 648, 1, p. 559
12. Valyavin G., Wade G.A., Bagnulo S., et al., 2008, Astrophysical Journal, 683, 1, p. 466
13. Valyavin G., Shulyak D., Wade G.A., et al., 2014, Nature, 515, 7525, p. 88
14. Wendell C.E., van Horn H.M., Sargent D., 1987, Astrophysical Journal, 313, p. 284