Россия
УДК 53 Физика
УДК 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
УДК 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
УДК 523 Солнечная система
УДК 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
УДК 52-1 Метод изучения
УДК 52-6 Излучение и связанные с ним процессы
ГРНТИ 41.00 АСТРОНОМИЯ
ГРНТИ 29.35 Радиофизика. Физические основы электроники
ГРНТИ 29.31 Оптика
ГРНТИ 29.33 Лазерная физика
ГРНТИ 29.27 Физика плазмы
ГРНТИ 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
ОКСО 03.06.01 Физика и астрономия
ОКСО 03.05.01 Астрономия
ОКСО 03.04.03 Радиофизика
ББК 2 ЕСТЕСТВЕННЫЕ НАУКИ
ББК 223 Физика
ТБК 614 Астрономия
ТБК 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
We present the development of a method for determining dwarf novae parameters and their temporal changes from the analysis of observations for several times. Using the modeling method of H I lines in the optical spectra of dwarf novae with high-temperature white dwarfs leads to large errors in the measured parameters. Therefore, the idea of using observations for several times was proposed, which will allow to determine the parameters of the system with greater accuracy. The dwarf novae FL Psc, which belongs to the WZ Sge type, was chosen as a test object. Its spectroscopic observations were carried out in 2021 and 2023 years by the 6-m BTA telescope. According to the light curve from the ZTF archive, in 2021 FL Psc was in a quiescent state, and in 2023 observations were made at the final stage FL Psc of relaxation to the pre-outburst level. The values of white dwarf temperature in both times of observations were obtained using the requirement of the invariability of the gravity value on its surface. However, similar temperature values in both times of observations differ from the literature predictions on the temperature increase of a white dwarf after a superoutburst.
methods: numerical; stars: dwarf novae, fundamental parameters; individual: FL Psc
1. Afanasiev V.L and Moiseev A.V, 2005, Astronomy Letters, 31, 3, p. 194
2. Baraffe I., Chabrier G., Barman T., et al., 2003, Astronomy \& Astrophysics, 402, p. 701
3. Dudnik A.A., Shimansky V.V., Borisov N.V., et al., 2023, Astrophysical Bulletin, 78, 1, p. 25
4. Eggleton P.P., 1983, Astrophysical Journal, 268, p. 368
5. Girardi L., Bressan A., Bertelli G., et al., 2000, Astronomy and Astrophysics Supplement Series, 141, p. 371
6. Godon P., Sion E.M., Cheng F., et al., 2006, Astrophysical Journal, 642, 2, p. 1018
7. Kato T., 2015, Publications of the Astronomical Society of Japan, 67, 6, id. 108
8. Kolbin A.I., Borisov N.V., Serebriakova N.A., et al., 2022, Monthly Notices of the Royal Astronomical Society, 511, 1, p. 20
9. Long K.S., Sion E.M., G \"a nsicke B.T., et al., 2004, Astrophysical Journal, 602, 2, p. 948
10. Masci F.J., Laher R.,R. Rusholme B., et al., 2019, Publications of the Astronomical Society of the Pacific, 131, 995, p. 018003
11. Mitrofanova A.A., Borisov N.V., Shimansky V.V., 2014, Astrophysical Bulletin, 69, 1, p. 82
12. Panei J.A., Althaus L.G., Benvenuto O.G., 2000, Astronomy \& Astrophysics, 353, p. 970
13. Smith R.C., 2006, Contemporary Physics, 47, 6, p. 363
14. Templeton M.R., Leaman R., Szkody P., et al., 2006, Publications of the Astronomical Society of the Pacific, 118, 840, p. 236