УДК 53 Физика
УДК 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
УДК 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
УДК 523 Солнечная система
УДК 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
УДК 52-1 Метод изучения
УДК 52-6 Излучение и связанные с ним процессы
ГРНТИ 41.00 АСТРОНОМИЯ
ГРНТИ 29.35 Радиофизика. Физические основы электроники
ГРНТИ 29.31 Оптика
ГРНТИ 29.33 Лазерная физика
ГРНТИ 29.27 Физика плазмы
ГРНТИ 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
ОКСО 03.06.01 Физика и астрономия
ОКСО 03.05.01 Астрономия
ОКСО 03.04.03 Радиофизика
ББК 2 ЕСТЕСТВЕННЫЕ НАУКИ
ББК 223 Физика
ТБК 614 Астрономия
ТБК 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
We present the results of a study of the non-eruptive C2.8 class flare in the active region (AR) NOAA 13256, which occurred on March 19,2023 from 02:12 to 02:19 UTC. This event was chosen on the basis of the test launches of the Irkutsk Solar Radio Spectropolarimeter (SOLARSPEL), Badary (ISTP RAS). Despite the low X-ray class and short duration, according to SOLARSPEL data, this impulsive flare had a complex multi-peak fine time structure, recorded at different frequencies in the microwave range. The presence of a photospheric disturbance in the vicinity of the sunspot penumbra, recorded using HMI/SDO, was of great interest for physics and motivated this study. There are few detailed multi-wavelength studies in the literature of low-power flares accompanied by a response at the photosphere level. Notably, this event was observed simultaneously by four X-ray instruments: SoLO/STIX, ASO-S/HXI, FERMI/GBM, and Konus-Wind. As a result, the unique observation conditions of this flare, from the point of view of the available instruments and various recorded physical high-energy processes, motivated us to carry out detailed research. We found that the photospheric perturbations are mostly associated with the stronger magnetic field in the penumbra rather than with the distribution of the HXR sources. The observed flare ribbons were located in the penumbral PIL region, which revealed the complexity of the larger events in terms of the spatial and temporal structure of the energy release. We also briefly discuss the observed quasi-periodic pulsations.
Sun: solar flare, radio emission, X-ray emission, photospheric perturbations, magnetic fields
1. Altyntsev A.T., Lesovoi S., Globa M., et al., 2020, Solar-Terrestrial Physics, 6, 2, p. 30
2. Aptekar R.L., Cline T.L., Frederiks D.D., et al., 2009, Astrophysical Journal Letters, 698, 2, p. L82
3. Krucker Säm, Hurford G.J., Grimm O., et al., 2020, Astronomy & Astrophysics, 642, id. A15
4. Lemen J.R., Title A.M., Akin D.J., et al. 2012, Solar Physics, 275, 1-2, p. 17
5. Meegan C., Lichti G., Bhat P.N., et al., 2009, Astrophysical Journal, 702, 1, p. 791
6. Nakajima H., Sekiguchi H., Sawa M., et al., 1985, Publications of Astronomical Society of Japan, 37, p. 163
7. Nakariakov V.M. and Melnikov V.F., Space Science Reviews, 2009, 149, 1-4, p. 119
8. Scherrer P.H., Schou J., Bush R.I., et al., 2012, Solar Physics, 275, 1-2, p. 207.
9. Song Y., Tian H., Zhu X., et al., 2020, Astrophysical Journal Letters, 893, 1, id. L13
10. Song Y. and Tian H., 2018, Astrophysical Journal, 867, 2, id. 159
11. Zhang Z., Chen D.-Y., Wu J., et al., 2019, Research in Astronomy & Astrophysics, 19, 11, id. 160
12. Zimovets I.V., McLaughlin J.A., Srivastava A.K., et al., 2021, Space Science Reviews, 217, p. 66