Saint-Petersburg State University
УДК 53 Физика
УДК 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
УДК 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
УДК 523 Солнечная система
УДК 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
УДК 52-1 Метод изучения
УДК 52-6 Излучение и связанные с ним процессы
ГРНТИ 41.00 АСТРОНОМИЯ
ГРНТИ 29.35 Радиофизика. Физические основы электроники
ГРНТИ 29.31 Оптика
ГРНТИ 29.33 Лазерная физика
ГРНТИ 29.27 Физика плазмы
ГРНТИ 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
ОКСО 03.06.01 Физика и астрономия
ОКСО 03.05.01 Астрономия
ОКСО 03.04.03 Радиофизика
ББК 2 ЕСТЕСТВЕННЫЕ НАУКИ
ББК 223 Физика
ТБК 614 Астрономия
ТБК 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
We study the fossil large-scale magnetic field evolution in a turbulent accretion disk of young T Tauri star. The coefficient of turbulent viscosity is calculated according to the Shakura and Sunyaev model. The modeling is performed taking into account the weakening of the turbulence in the region of low ionization fraction (``dead" zone). The ionization structure is calculated taking into account thermal ionization, cosmic rays and radioactive elements, radiative recombinations and recombinations on dust grains. The magnetic field is calculated taking into account ambipolar diffusion. The simulations show that the magnetic field is frozen in gas and its strength is proportional to the gas surface density in the inner region of the disk, $R<0.2$ AU. The magnetic field strength increases from $10^2$ G to $10^3$ G in this region within 5 Myr. The outer boundary of the ``dead" zone depends on the dust grain size and ranges from 30 AU for $a_g=0.1$ $\mu$m to 3 AU for $a_g=10^3$ $\mu$m. The size of the ``dead" zone decreases with time. The magnetic field strength inside the ``dead" zone remains practically constant at around $10^{-3}$–$10^{-4}$ G during the disk evolution.
stars: protoplanetary disks, magnetic fields, pre-main sequence
1. Dudorov A., 1995, Astronomy Reports, 39, 6, p. 790
2. Dudorov A. and Khaibrakhmanov S., 2014, Astrophysics and Space Science, 352, 1, p. 103
3. Khaibrakhmanov S., 2024, Astronomical and Astrophysical Transactions, 34, 2, p. 139
4. Khaibrakhmanov S. and Dudorov A., 2022, Astronomy Reports, 66, 10, p. 872
5. Pringle J., 1981, Annual Review of Astronomy \& Astrophysics, 19, p. 137
6. Shakura N. and Sunyaev R., 1973, Astronomy \& Astrophysics, 24, p. 337
7. Williams J. and Cieza L., 2011, Annual Review of Astronomy and Astrophysics, 49, 1, p. 67