Россия
УДК 52 Астрономия. Геодезия
УДК 53 Физика
УДК 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
УДК 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
УДК 523 Солнечная система
УДК 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
УДК 52-1 Метод изучения
УДК 52-6 Излучение и связанные с ним процессы
ГРНТИ 41.00 АСТРОНОМИЯ
ГРНТИ 29.35 Радиофизика. Физические основы электроники
ГРНТИ 29.31 Оптика
ГРНТИ 29.33 Лазерная физика
ГРНТИ 29.27 Физика плазмы
ГРНТИ 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
ОКСО 03.06.01 Физика и астрономия
ОКСО 03.05.01 Астрономия
ОКСО 03.04.03 Радиофизика
ББК 2 ЕСТЕСТВЕННЫЕ НАУКИ
ББК 223 Физика
ТБК 614 Астрономия
ТБК 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
The presence of continuous cooling and heating processes is a crucial condition that determines the existence of the solar corona. The defining aspects of the corona include the magnetic field, low plasma density, and high temperature of the corona. In this regard, the study of low-contrast structures in optical ranges is limited even with the use of large specialized telescopes. The radio range provides higher sensitivity, which can be used to detect very weak structures of emerging activity. However, the radio astronomical range also faces challenges in observation, both in terms of spatial resolution and the limitations of dynamic range due to the high temperature of the Sun's corona. Observations show that the use of instruments with a large effective area allows us to overcome the main problem associated with the influence of powerful radiation from the quiet Sun, which amplifies equipment noise. The high sensitivity of the RATAN-600 reflector radio telescope to weak signals in radiation flux was used in the decimeter range for the detection of weak microwave bursts at a level of
Sun: corona, radio radiation
1. Antolin P., 2020, Plasma Physics and Controlled Fusion, 62, 1, id. 014016
2. Bogod V.M., Lebedev M.K., Ovchinnikova N.E., et al., 2023, Cosmic Research, 61, 1, p. 27
3. Ovchinnikova N.E., Bogod V.M., Lebedev M.K., 2024, Solnechno-zemnaya fizika, 10, 3, p. 21
4. Ovchinnikova N.E., Lebedev M.K., Bogod V.M., et al., 2022, Proceedings of Science, 425, id. 007
5. Parker E.N., 1988, Astrophysical Journal, 330, p. 474
6. Ripak A.M., Bogod V.M., Grenkov S.A., et al., 2023, Astrophysical Bulletin, 78, 4, p. 657