Saint-Petersburg State University
Russian Federation
UDK 53 Физика
UDK 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
UDK 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
UDK 523 Солнечная система
UDK 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
UDK 52-1 Метод изучения
UDK 52-6 Излучение и связанные с ним процессы
GRNTI 41.00 АСТРОНОМИЯ
GRNTI 29.35 Радиофизика. Физические основы электроники
GRNTI 29.31 Оптика
GRNTI 29.33 Лазерная физика
GRNTI 29.27 Физика плазмы
GRNTI 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
OKSO 03.06.01 Физика и астрономия
OKSO 03.05.01 Астрономия
OKSO 03.04.03 Радиофизика
BBK 2 ЕСТЕСТВЕННЫЕ НАУКИ
BBK 223 Физика
TBK 614 Астрономия
TBK 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
Using numerical modeling, perturbations that occur in the rotational motion of small (10-50 m in diameter) asteroids during their close approaches to the Earth (at distances of the order of several Earth radii) are considered. For a number of asteroids (Duende, 2012TC4 and 2023BU), estimates of possible changes in the rotational period $P$ and the orientation of the rotational axis due to approach to the Earth were obtained. It has been established that in the case of fast rotation of an asteroid ($P < 1$ h), perturbations in its rotational motion that arise during approach are negligible. With a relatively slow rotation of the asteroid ($P > 5$ h), perturbations can be significant: changes in $P$ may reach several hours, and deviations of the rotation axis from the initial position may amount to tens of degrees. Such perturbations influence further orbital dynamics of a slowly rotating asteroid by changing the magnitude of the Yarkovsky effect.
celestial mechanics; minor planets, asteroids: general; methods: numerical
1. Benson C.J., Scheeres D.J., and Moskovitz N.A., 2020, Icarus, 340, id. 113518
2. Boldrin L.A.G., Araujo R.A.N., and Winter O.C., 2020, European Physical Journal - Special Topics, 229, 8, p. 1391
3. Fenucci M., Micheli M., Gianotto F., et al., 2024, Astronomy & Astrophysics, 682, id. A29
4. Lee H.-J., Ďurech J., Vokrouhlický D., et al., 2021, Astronomical Journal, 161, 3, id. 112
5. Lobanova K.S. and Melnikov A.V., 2024, Solar System Research, 58, 2, p. 208
6. Marsden B.G., Sekanina Z., and Yeomans D.K., 1973, Astronomical Journal, 78, 2, p. 211
7. Martyusheva A.A. and Melnikov A.V., 2023, Solar System Research, 57, 5, p. 486
8. Melnikov A.V., 2022, Solar System Research, 56, 4, p. 241
9. Pravec P. and Harris A.W., 2000, Icarus, 148, 1, p. 12
10. Scheeres D.J., Ostro S.J., Werner R.A., et al., 2000, Icarus, 147, 1, p. 106
11. Vokrouhlický D., Milani A., and Chesley S.R., 2000, Icarus, 148, 1, p. 118