Saint Petersburg State University
УДК 53 Физика
УДК 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
УДК 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
УДК 523 Солнечная система
УДК 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
УДК 52-1 Метод изучения
УДК 52-6 Излучение и связанные с ним процессы
ГРНТИ 41.00 АСТРОНОМИЯ
ГРНТИ 29.35 Радиофизика. Физические основы электроники
ГРНТИ 29.31 Оптика
ГРНТИ 29.33 Лазерная физика
ГРНТИ 29.27 Физика плазмы
ГРНТИ 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
ОКСО 03.06.01 Физика и астрономия
ОКСО 03.05.01 Астрономия
ОКСО 03.04.03 Радиофизика
ББК 2 ЕСТЕСТВЕННЫЕ НАУКИ
ББК 223 Физика
ТБК 614 Астрономия
ТБК 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
Using numerical modeling, perturbations that occur in the rotational motion of small (10--50 m in diameter) asteroids during their close approaches to the Earth (at distances of the order of several Earth radii) are considered. For a number of asteroids (Duende, 2012\,TC4 and 2023 BU), estimates of possible changes in the rotational period $P$ and the orientation of the rotational axis due to approach to the Earth were obtained. It has been established that in the case of fast rotation of an asteroid ($P < 1$~h), perturbations in its rotational motion that arise during approach are negligible. With a relatively slow rotation of the asteroid ($P > 5$~h), perturbations can be significant: changes in $P$ may reach several hours, and deviations of the rotation axis from the initial position may amount to tens of degrees. Such perturbations influence further orbital dynamics of a slowly rotating asteroid by changing the magnitude of the Yarkovsky effect.
celestial mechanics; minor planets, asteroids: general; methods: numerical
1. Benson C.J., Scheeres D.J., and Moskovitz N.A., 2020, Icarus, 340, id. 113518
2. Boldrin L.A.G., Araujo R.A.N., and Winter O.C., 2020, European Physical Journal - Special Topics, 229, 8, p. 1391
3. Fenucci M., Micheli M., Gianotto F., et al., 2024, Astronomy \& Astrophysics, 682, id. A29
4. Lee H.-J., D urech J., Vokrouhlick \' y D., et al., 2021, Astronomical Journal, 161, 3, id. 112
5. Lobanova K.S. and Melnikov A.V., 2024, Solar System Research, 58, 2, p. 208
6. Marsden B.G., Sekanina Z., and Yeomans D.K., 1973, Astronomical Journal, 78, 2, p. 211
7. Martyusheva A.A. and Melnikov A.V., 2023, Solar System Research, 57, 5, p. 486
8. Melnikov A.V., 2022, Solar System Research, 56, 4, p. 241
9. Pravec P. and Harris A.W., 2000, Icarus, 148, 1, p. 12
10. Scheeres D.J., Ostro S.J., Werner R.A., et al., 2000, Icarus, 147, 1, p. 106
11. Vokrouhlick \' y D., Milani A., and Chesley S.R., 2000, Icarus, 148, 1, p. 118