UDK 53 Физика
UDK 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
UDK 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
UDK 523 Солнечная система
UDK 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
UDK 52-1 Метод изучения
UDK 52-6 Излучение и связанные с ним процессы
GRNTI 41.00 АСТРОНОМИЯ
GRNTI 29.35 Радиофизика. Физические основы электроники
GRNTI 29.31 Оптика
GRNTI 29.33 Лазерная физика
GRNTI 29.27 Физика плазмы
GRNTI 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
OKSO 03.06.01 Физика и астрономия
OKSO 03.05.01 Астрономия
OKSO 03.04.03 Радиофизика
BBK 2 ЕСТЕСТВЕННЫЕ НАУКИ
BBK 223 Физика
TBK 614 Астрономия
TBK 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
We use the CrAO catalog of the magneto-morphological classes (MMC) of active regions (ARs) to study the hemispheric distribution of the number and magnetic fluxes of ARs that appeared on the disk from May 1996 to December 2021. 3047 ARs were distributed between classes of the regular (bipolar groups that obey empiric rules for sunspots) and irregular (all the rest, except for unipolar sunspots) ARs. The analysis of the results showed that all the trends are more pronounced in the flux data. For the irregular ARs, the strongest peaks in time profiles are observed in the second maximum of the cycle in the S-hemisphere. ARs of both MMC types demonstrate noticeable N-S asymmetry. The most abrupt changes are shown by the irregular ARs fluxes. For the compiled quadrupolar-like component of the flux, the evidence of oscillations with a period of about 15 years is found for all studied ARs and for the irregular groups. For the regular ARs, cross-correlation of ARs fluxes in different hemispheres in adjacent cycles showed no features. For the irregular groups, a high correspondence in flux dynamics in the N-hemisphere of cycle 23 and in the S-hemisphere of cycle 24 is found.
Sun: activity, magnetic fields, sunspots
1. Abramenko V., Zhukova A., Kutsenko A., 2018, Geomagnetism and Aeronomy, 58, 8, p. 1159
2. Abramenko V., Suleymanova R., Zhukova A., 2023, Monthly Notices of the Royal Astronomical Society, 518, 3, p. 4746
3. Abramenko V., 2021, Monthly Notices of the Royal Astronomical Society, 507, 3, p. 3698
4. Hazra S. and Nandy D., 2019, Monthly Notices of the Royal Astronomical Society, 489, 3, p. 4329
5. Kitchatinov L., 2022, Geomagnetism and Aeronomy, 62, 7, p. 817
6. Obridko V., Pipin V., Sokoloff D., et al., 2021, Monthly Notices of the Royal Astronomical Society, 504, 4, p. 4990
7. Sokoloff D. and Nesme-Ribes E., 1994, Astronomy \& Astrophysics, 288, p. 293
8. Zhukova A., Sokoloff D., Abramenko V., et al., 2023, Advances in Space Research, 71, 4, p. 1984
9. Zhukova A., Abramenko V., Suleymanova R., 2024, Geomagnetism and Aeronomy, in print