УДК 53 Физика
УДК 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
УДК 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
УДК 523 Солнечная система
УДК 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
УДК 52-1 Метод изучения
УДК 52-6 Излучение и связанные с ним процессы
ГРНТИ 41.00 АСТРОНОМИЯ
ГРНТИ 29.35 Радиофизика. Физические основы электроники
ГРНТИ 29.31 Оптика
ГРНТИ 29.33 Лазерная физика
ГРНТИ 29.27 Физика плазмы
ГРНТИ 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
ОКСО 03.06.01 Физика и астрономия
ОКСО 03.05.01 Астрономия
ОКСО 03.04.03 Радиофизика
ББК 2 ЕСТЕСТВЕННЫЕ НАУКИ
ББК 223 Физика
ТБК 614 Астрономия
ТБК 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
We use the CrAO catalog of the magneto-morphological classes (MMC) of active regions (ARs) to study the hemispheric distribution of the number and magnetic fluxes of ARs that appeared on the disk from May 1996 to December 2021. 3047 ARs were distributed between classes of the regular (bipolar groups that obey empiric rules for sunspots) and irregular (all the rest, except for unipolar sunspots) ARs. The analysis of the results showed that all the trends are more pronounced in the flux data. For the irregular ARs, the strongest peaks in time profiles are observed in the second maximum of the cycle in the S-hemisphere. ARs of both MMC types demonstrate noticeable N-S asymmetry. The most abrupt changes are shown by the irregular ARs fluxes. For the compiled quadrupolar-like component of the flux, the evidence of oscillations with a period of about 15 years is found for all studied ARs and for the irregular groups. For the regular ARs, cross-correlation of ARs fluxes in different hemispheres in adjacent cycles showed no features. For the irregular groups, a high correspondence in flux dynamics in the N-hemisphere of cycle 23 and in the S-hemisphere of cycle 24 is found.
Sun: activity, magnetic fields, sunspots
1. Abramenko V., Zhukova A., Kutsenko A., 2018, Geomagnetism and Aeronomy, 58, 8, p. 1159
2. Abramenko V., Suleymanova R., Zhukova A., 2023, Monthly Notices of the Royal Astronomical Society, 518, 3, p. 4746
3. Abramenko V., 2021, Monthly Notices of the Royal Astronomical Society, 507, 3, p. 3698
4. Hazra S. and Nandy D., 2019, Monthly Notices of the Royal Astronomical Society, 489, 3, p. 4329
5. Kitchatinov L., 2022, Geomagnetism and Aeronomy, 62, 7, p. 817
6. Obridko V., Pipin V., Sokoloff D., et al., 2021, Monthly Notices of the Royal Astronomical Society, 504, 4, p. 4990
7. Sokoloff D. and Nesme-Ribes E., 1994, Astronomy \& Astrophysics, 288, p. 293
8. Zhukova A., Sokoloff D., Abramenko V., et al., 2023, Advances in Space Research, 71, 4, p. 1984
9. Zhukova A., Abramenko V., Suleymanova R., 2024, Geomagnetism and Aeronomy, in print