Sternberg State Astronomical Institute of Moscow State University
Sternberg State Astronomical Institute of Moscow State University
UDK 53 Физика
UDK 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
UDK 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
UDK 523 Солнечная система
UDK 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
UDK 52-1 Метод изучения
UDK 52-6 Излучение и связанные с ним процессы
GRNTI 41.00 АСТРОНОМИЯ
GRNTI 29.35 Радиофизика. Физические основы электроники
GRNTI 29.31 Оптика
GRNTI 29.33 Лазерная физика
GRNTI 29.27 Физика плазмы
GRNTI 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
OKSO 03.06.01 Физика и астрономия
OKSO 03.05.01 Астрономия
OKSO 03.04.03 Радиофизика
BBK 2 ЕСТЕСТВЕННЫЕ НАУКИ
BBK 223 Физика
TBK 614 Астрономия
TBK 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
Recently made possible observations of cool and faint white dwarfs using the Gaia and other telescopes provide rich material for refining the modeling of the final stage of their evolution, which in turn can be used to study the behavior of matter under extreme conditions. In this paper, we simulate the thermal evolution of white dwarfs for different atmospheric compositions using equations of state for non-ideal dense plasma. By taking into account the effects of non-ideality in the code for the evolution of white dwarfs, it is possible to reach the stage of crystallization at the center of the star. The subsequent acceleration of cooling is significant for massive white dwarfs ($M \approx 1.3$ $M_{\odot}$), for which the cooling time at $T_{\rm eff} \approx 3 \times 10^3$ K decreases almost 10 times compared to the calculation without non-ideality effects.
stars: evolution, white dwarfs; dense matter; equation of state; plasmas
1. Bauer E.B., 2023, Astrophysical Journal, 950, 2, id. 115
2. B \'e dard A., Bergeron P., Brassard P., et al., 2020, Astrophysical Journal, 901, 2, id. 93
3. Blinnikov S.I. and Dunina-Barkovskaya N.V., 1994, Monthly Notices of the Royal Astronomical Society, 266, p. 289
4. Blinnikov S.I. and Dunina-Barkovskaya N.V., 1993, Astronomy Reports, 37, 2, p. 187
5. Blinnikov S., Dunina-Barkovskaya N., Nadyozhin D., 1996, Astrophysical Journal Supplement, 106, p. 171
6. Camisassa M.E., Althaus L.G., Koester D., et al., 2022, Monthly Notices of the Royal Astronomical Society, 511, 4, p. 5198
7. Elms A.K., Tremblay P.-E., G \"a nsicke B.T., et al., 2022, Monthly Notices of the Royal Astronomical Society, 517, 3, p. 4557
8. Fontaine G., Brassard P., Bergeron P., 2001, Publications of the Astronomical Society of the Pacific, 113, 782, p. 409
9. Nadyozhin D.K and Razinkova T.L, 1986, Nauchnye Informatsii, 61, p. 29
10. Potekhin A.Y. and Chabrier G., 2013, Astronomy \& Astrophysics, 550, id. A43
11. Potekhin A.Y. and Chabrier G., 2010, Contributions to Plasma Physics, 50, 1, p. 82
12. Segretain L. and Chabrier G., 1993, Astronomy \& Astrophysics, 271, p. L13