Sternberg State Astronomical Institute of Moscow State University
Sternberg State Astronomical Institute of Moscow State University
УДК 53 Физика
УДК 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
УДК 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
УДК 523 Солнечная система
УДК 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
УДК 52-1 Метод изучения
УДК 52-6 Излучение и связанные с ним процессы
ГРНТИ 41.00 АСТРОНОМИЯ
ГРНТИ 29.35 Радиофизика. Физические основы электроники
ГРНТИ 29.31 Оптика
ГРНТИ 29.33 Лазерная физика
ГРНТИ 29.27 Физика плазмы
ГРНТИ 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
ОКСО 03.06.01 Физика и астрономия
ОКСО 03.05.01 Астрономия
ОКСО 03.04.03 Радиофизика
ББК 2 ЕСТЕСТВЕННЫЕ НАУКИ
ББК 223 Физика
ТБК 614 Астрономия
ТБК 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
Recently made possible observations of cool and faint white dwarfs using the Gaia and other telescopes provide rich material for refining the modeling of the final stage of their evolution, which in turn can be used to study the behavior of matter under extreme conditions. In this paper, we simulate the thermal evolution of white dwarfs for different atmospheric compositions using equations of state for non-ideal dense plasma. By taking into account the effects of non-ideality in the code for the evolution of white dwarfs, it is possible to reach the stage of crystallization at the center of the star. The subsequent acceleration of cooling is significant for massive white dwarfs ($M \approx 1.3$ $M_{\odot}$), for which the cooling time at $T_{\rm eff} \approx 3 \times 10^3$ K decreases almost 10 times compared to the calculation without non-ideality effects.
stars: evolution, white dwarfs; dense matter; equation of state; plasmas
1. Bauer E.B., 2023, Astrophysical Journal, 950, 2, id. 115
2. B \'e dard A., Bergeron P., Brassard P., et al., 2020, Astrophysical Journal, 901, 2, id. 93
3. Blinnikov S.I. and Dunina-Barkovskaya N.V., 1994, Monthly Notices of the Royal Astronomical Society, 266, p. 289
4. Blinnikov S.I. and Dunina-Barkovskaya N.V., 1993, Astronomy Reports, 37, 2, p. 187
5. Blinnikov S., Dunina-Barkovskaya N., Nadyozhin D., 1996, Astrophysical Journal Supplement, 106, p. 171
6. Camisassa M.E., Althaus L.G., Koester D., et al., 2022, Monthly Notices of the Royal Astronomical Society, 511, 4, p. 5198
7. Elms A.K., Tremblay P.-E., G \"a nsicke B.T., et al., 2022, Monthly Notices of the Royal Astronomical Society, 517, 3, p. 4557
8. Fontaine G., Brassard P., Bergeron P., 2001, Publications of the Astronomical Society of the Pacific, 113, 782, p. 409
9. Nadyozhin D.K and Razinkova T.L, 1986, Nauchnye Informatsii, 61, p. 29
10. Potekhin A.Y. and Chabrier G., 2013, Astronomy \& Astrophysics, 550, id. A43
11. Potekhin A.Y. and Chabrier G., 2010, Contributions to Plasma Physics, 50, 1, p. 82
12. Segretain L. and Chabrier G., 1993, Astronomy \& Astrophysics, 271, p. L13