Россия
УДК 53 Физика
УДК 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
УДК 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
УДК 523 Солнечная система
УДК 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
УДК 52-1 Метод изучения
УДК 52-6 Излучение и связанные с ним процессы
ГРНТИ 41.00 АСТРОНОМИЯ
ГРНТИ 29.35 Радиофизика. Физические основы электроники
ГРНТИ 29.31 Оптика
ГРНТИ 29.33 Лазерная физика
ГРНТИ 29.27 Физика плазмы
ГРНТИ 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
ОКСО 03.06.01 Физика и астрономия
ОКСО 03.05.01 Астрономия
ОКСО 03.04.03 Радиофизика
ББК 2 ЕСТЕСТВЕННЫЕ НАУКИ
ББК 223 Физика
ТБК 614 Астрономия
ТБК 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
In the case of conservative mass exchange in a binary system in the Hertzsprung gap, the mass of the accreting star can increase by up to two times. The accreted matter brings Keplerian angular momentum with it. The meridional circulation transfers 80–85% of the incoming angular momentum to the surface of the accretor. The increase in the mass and angular momentum of the accretor occurs due to the loss of this part of the angular momentum. After the mass exchange is completed, most of the angular momentum is concentrated in the accreted layers. The accretor has a large enough angular momentum to maintain its status as a Be star during its subsequent evolution on the main sequence.
stars: binaries; emission-line; Be; early-type; rotation
1. Bisnovatyi-Kogan G.S., 1993, Astronomy \& Astrophysics, 274, p. 796
2. Chojnowski S.D., Labadie-Bartz J., Rivinius T., et al., 2018, Astrophysical Journal, 865, 1, id. 76
3. Gies D.R., Bagnuolo W.G., Ferrara E.C., et al., 1998, Astrophysical Journal, 493, 1, p. 440
4. Paczynski B., 1991, Astrophysical Journal, 370, p. 597
5. Van Rensbergen W. and De Greve J.P., 2020, Astronomy \& Astrophysics, 642, id. A183
6. Schootemeijer A., G \"o tberg Y., de Mink S.E., et al., 2018, Astronomy \& Astrophysics, 615, id. A30
7. Staritsin E., 2021, Astronomy \& Astrophysics, 646, id. A90
8. Staritsin E., 2022, Research in Astronomy and Astrophysics, 22, 10, id. 105015
9. Staritsin E.I., 2023a, Astronomy Reports, 67, 9, p. 959
10. Staritsin E.I., 2023b, INASAN Science Reports, 8, 2, p. 54
11. Staritsin E., 2024a, Research in Astronomy and Astrophysics, 24, 1, id. 015001
12. Staritsin E., 2024b, Research in Astronomy and Astrophysics, accepted
13. Vanbeveren D., De Loore C., Van Rensbergen W., 1998, Astronomy and Astrophysics Review, 9, 1-2, p. 63
14. Wang L., Gies D.R., Peters G.J., et al., 2023, Astronomical Journal, 165, 5, id. 203