Russian Federation
UDK 53 Физика
UDK 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
UDK 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
UDK 523 Солнечная система
UDK 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
UDK 52-1 Метод изучения
UDK 52-6 Излучение и связанные с ним процессы
GRNTI 41.00 АСТРОНОМИЯ
GRNTI 29.35 Радиофизика. Физические основы электроники
GRNTI 29.31 Оптика
GRNTI 29.33 Лазерная физика
GRNTI 29.27 Физика плазмы
GRNTI 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
OKSO 03.06.01 Физика и астрономия
OKSO 03.05.01 Астрономия
OKSO 03.04.03 Радиофизика
BBK 2 ЕСТЕСТВЕННЫЕ НАУКИ
BBK 223 Физика
TBK 614 Астрономия
TBK 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
In the case of conservative mass exchange in a binary system in the Hertzsprung gap, the mass of the accreting star can increase by up to two times. The accreted matter brings Keplerian angular momentum with it. The meridional circulation transfers 80–85% of the incoming angular momentum to the surface of the accretor. The increase in the mass and angular momentum of the accretor occurs due to the loss of this part of the angular momentum. After the mass exchange is completed, most of the angular momentum is concentrated in the accreted layers. The accretor has a large enough angular momentum to maintain its status as a Be star during its subsequent evolution on the main sequence.
stars: binaries; emission-line; Be; early-type; rotation
1. Bisnovatyi-Kogan G.S., 1993, Astronomy \& Astrophysics, 274, p. 796
2. Chojnowski S.D., Labadie-Bartz J., Rivinius T., et al., 2018, Astrophysical Journal, 865, 1, id. 76
3. Gies D.R., Bagnuolo W.G., Ferrara E.C., et al., 1998, Astrophysical Journal, 493, 1, p. 440
4. Paczynski B., 1991, Astrophysical Journal, 370, p. 597
5. Van Rensbergen W. and De Greve J.P., 2020, Astronomy \& Astrophysics, 642, id. A183
6. Schootemeijer A., G \"o tberg Y., de Mink S.E., et al., 2018, Astronomy \& Astrophysics, 615, id. A30
7. Staritsin E., 2021, Astronomy \& Astrophysics, 646, id. A90
8. Staritsin E., 2022, Research in Astronomy and Astrophysics, 22, 10, id. 105015
9. Staritsin E.I., 2023a, Astronomy Reports, 67, 9, p. 959
10. Staritsin E.I., 2023b, INASAN Science Reports, 8, 2, p. 54
11. Staritsin E., 2024a, Research in Astronomy and Astrophysics, 24, 1, id. 015001
12. Staritsin E., 2024b, Research in Astronomy and Astrophysics, accepted
13. Vanbeveren D., De Loore C., Van Rensbergen W., 1998, Astronomy and Astrophysics Review, 9, 1-2, p. 63
14. Wang L., Gies D.R., Peters G.J., et al., 2023, Astronomical Journal, 165, 5, id. 203