УДК 53 Физика
УДК 520 Инструменты, приборы и методы астрономических наблюдений, измерений и анализа
УДК 521 Теоретическая астрономия. Небесная механика. Фундаментальная астрономия. Теория динамической и позиционной астрономии
УДК 523 Солнечная система
УДК 524 Звезды и звездные системы. Вселенная Солнце и Солнечная система
УДК 52-1 Метод изучения
УДК 52-6 Излучение и связанные с ним процессы
ГРНТИ 41.00 АСТРОНОМИЯ
ГРНТИ 29.35 Радиофизика. Физические основы электроники
ГРНТИ 29.31 Оптика
ГРНТИ 29.33 Лазерная физика
ГРНТИ 29.27 Физика плазмы
ГРНТИ 29.05 Физика элементарных частиц. Теория полей. Физика высоких энергий
ОКСО 03.06.01 Физика и астрономия
ОКСО 03.05.01 Астрономия
ОКСО 03.04.03 Радиофизика
ББК 2 ЕСТЕСТВЕННЫЕ НАУКИ
ББК 223 Физика
ТБК 614 Астрономия
ТБК 6135 Оптика
BISAC SCI004000 Astronomy
BISAC SCI005000 Physics / Astrophysics
The pCam6060 photodetecting system has been developed at SAO RAS based on the GSENSE6060BSI photodetector manufactured by GPixel (China) with a frame format of $6144 \times 6144$ active pixels and a pixel size of 10 micrometers. The readout speed reaches 11 fps. The back-illuminated detector has a wide spectral range of 200–1040 nm with a minimum quantum efficiency (QE) of 10% and a maximum sensitivity of 95% at 580 nm. The quantum efficiency in the near-infrared range is 58% at 850 nm. The pCam6060 system controller implements a mode of simultaneous image readout via two 12-bit video channels with different gain and their subsequent combination in the controller into a single frame with an extended 16-bit dynamic range. This method achieves simultaneously a low readout noise level (about 3 e$^{-}$) in the high-gain channel and a large dynamic range (full well capacity of about 100000 e$^{-}$) in the low-gain channel. Back-illuminated CMOS detectors, unlike front-illuminated devices, are not susceptible to the long-term preservation of the residual charge from previous exposures, which makes them suitable for recording faint objects in photometric long-exposure observing methods. Communication between the host computer and the camera is carried out via a fiber optic line at distances of up to 50 m. Video data are recorded on the computer hard drive in real-time. The pCam6060 photodetecting system is designed for astronomical applications and has a moisture-proof design.
instrumentation: detectors; methods: statistical
1. Afanasieva I.V., Murzin V.A., Ardilanov V.I., et al., 2019, Space Debris: Fundamental and Practical Aspects of the Threat, Proc. All-Russian Conf., ed. \ L.M. Zelenyi, B.M. Shustov, p. 52
2. Ardilanov V.I., Murzin V.A., Afanasieva I.V., et al., 2020, Ground-Based Astronomy in Russia. XXI century, Proc. All-Russian Conf., ed. \ I.I. Romanyuk, I.A. Yakunin, A.F. Valeev, D.O. Kudryavtsev, p. 115
3. Ardilanov V.I., Murzin V.A., Afanasieva I.V., et al., 2021, System synthesis and applied synergetics, Proc. All-Russian Conf., p. 216
4. Ardilanov V.I., Murzin V.A., Afanasieva I.V., et al., 2022, Astronomy at the epoch of multimessenger studies, Proc. All-Russian Astron. Conf., p. 52
5. Janesick J., Elliott T., Andrews J., et al., 2014, Proc. SPIE, 9211, id. 921106
6. Karpov S., Bajat A., Christov A., et al., 2020, Proc. SPIE, 11454, id. 114540G
7. Rogowska B., Konacki M., Chimicz A., et al., 2019, 20th Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS 2019), p. 75
8. Shen C., Ma C., Gao W., 2022, Sensors, 22, p. 9991
9. Stefanov K.D., 2022, CMOS Image Sensors, Bristol: IOP Publishing
10. Vlasyuk V.V., Afanasieva I.V., Ardilanov V.I., et al., 2024, Physics-Uspekhi, 67, p. 405